

GECO

POWERTEK

-	Technical Information	Pages for refer
		004 ~ 026
1.	Bearing materials	004
2.	External bearing sealing devices	005
3.	Bearing tolerances	005 ~ 008
4.	Bearing fits	008 ~ 010
5.	Bearing internal clearance	011 ~ 012
6.	Lubrication	012 ~ 015
7.	Load rating and life	015 ~ 020
8.	Bearing handling	021 ~ 023
9.	Allowable speed	024
10.	Vibration and Noise Value	025 ~ 026

GECO

L.	Ball Bearings	Pages for refer 028 ~ 054											
	Ball Bearings												
	60, 602RS, 60ZZ Series	028 ~ 029											
	62, 622RS, 62ZZ Series	030 ~ 031											
	63, 632RS, 63ZZ Series	032 ~ 033											
Ø	160 Series	034											
	68, 682RS, 68ZZ Series	035 ~ 036											
	69, 692RS, 69ZZ Series	037 ~ 038											
	622, 6222RS Series	039											
	623, 6232RS Series	040											
	623, 6232k5 Series 626 630, 6302R5 Series												
D	64 Series	042											
	Double-row Angular Contact Ball Bearings												
	52, 522RS, 52ZZ Series	043 ~ 044											
	53, 532RS, 53ZZ Series	045 ~ 046											
	Self-aligning Ball Bearings												
	12, 12K Series	047											
	13, 13K Series	048											
	22, 22K, 222RS Series	049 ~ 050											
	23, 23K, 232RS Series	051 ~ 052											
	Stainless Steel Ball Bearings												
	SS 60 2RS Series	053											
	SS 62 2RS Series	054											

1. Bearing materials

1.1 Raceway and rolling element materials

1.1.1 High/mid carbon alloy steel

In general, steel varieties which can be hardened not just on the surface but also deep hardened by the so-called "through hardening method" are used for the raceways and rolling elements of bearings. Foremost among these is high carbon chromium bearing steel, which is widely used.

1.1.2 Mid-carbon chromium steel

Mid-carbon chromium steel incorporating silicone and manganese, which gives it hardening properties comparable to high carbon chromium steel.

1.2 Cage materials

Bearing cage materials must have the strength to withstand rotational vibrations and shock loads. These materials must also have a low friction coefficient, be light weight, and be able to withstand bearing operation temperatures.

1.2.1 Pressed cages

For small and medium sized bearings, pressed cages of cold or hot rolled steel with a low carbon content of approx. 0.1% are used. However, depending on the application, austenitic stainless steel is also used.

1.2.2 Plastic cages

Injection molded plastic cages are now widely used: most are made from fiber glass reinforced heat resistant polyamide resin. Plastic cages are light weight, corrosion resistant and have excellent dampening and sliding properties. Heat resistant polyamide resins now enable the production of cages that perform well in applications ranging between -40° C - 120° C. However, they are not recommended for use at temperatures exceeding 120° C.

1.2.3 Steel cages

For temperatures exceeding 120 °C, steel cages are required to use.

Tables 1.1 and 1.2 give the chemical composition for these representative cage materials.

Table 1.1 Chemical composition of steel plate for pressed cages and carbon steel for machined cages.

	Standard JIS G 4305	Symbol			Chemi	cal compos	sition(%)		
	Sidildala	Symbol	С	Si	Mn	Р	S	Ni	Cr
Pressed retainers	JIS G 4305	SUS440 C	Max. 0.08	Max. 1.00	Max. 2.00	Max. 0.045	Max. 0.030	8.00~10.50	18.00~20.00

Table 1.2 Chemical composition of high-strength cast brass for machined cages

Standard	Symbol			Chemic	al compos	ition(%)			Impu	rities
Standard	Symbol	Си	Zn	Mn	Fe	Al	Sn	Ni	Pb	Si
JIS H 5120	CAC301	55.0~60.0	33.0~42.0	0.1~1.5	0.5~1.5	0.5~1.5	Max. 1.0	Max. 1.0	Max. 0.4	Max. 0.1

GECO®

2. External bearing sealing devices

External seals have two main functions: to prevent lubricating oil from leaking out, and, to prevent dust, water, and other contaminants from entering the bearing. When selecting a seal, the following factors need to be taken into consideration: the type of lubricant(oil or grease), seal peripheral speed, shaft fitting errors, space limitations, seal friction and resultant heat increase, and cost. Sealing devices for rolling bearings fall into two main classifications: non-contact seals and contact seals.

2.1 Non-contact seals:

Non-contact seals utilize a small clearance between the shaft and the housing cover. Theref ore friction is negligible, making them suitable forhigh speed applications. In order to improve sealing capability, clearance spaces are often filled with lubricant.

2.2 Contact seals:

Contact seals accomplish their sealing action through the contact pressure of a resilient the seal (the lip is often made of synthetic rubber) the sealing surface. Contact seals are generally far superior to noncontact seals in sealing efficieny, although their friction torque and temperature rise coefficients are higher. Furthermore, because the portion of a contact seal rotates while in contact wi the shaft,the allowable seal peripheral speed varie depending on seal type.

3. Bearing tolerances

3.1 Standard of tolerances

Ball bearing "tolerances" or dimensional accuracy and running accuracy, are regulated by ISO and JIS standards (rolling bearing tolerances). For dimensional accuracy, these standards prescribe the tolerances necessary when installing bearings on shafts or in housings. Running accuracy is defined as the allowable limits for bearing runout during operation.

Table 3.1 Comparison of tolerance classifications of national standards

Standard			Tole	rance clas	S	
Japanese industrial standard (JIS)	SIL	class 0,6X	class 6	class 5	class 4	class 2
International Organization for Standardization (ISO)	ISO	Normal class Class 6X	Class 6	Class 5	Class 4	Class 2
Deutsches Institut fur Normung(ISO)	DIN	PO	P6	P5	P4	P2
American National Standards Institute (ANSI)	ANSI/ABMA	ABEC-1	ABEC-3	ABEC-5	ABEC-7	ABEC-9

Table 3.2 Bearings types and applicable tolerance

Bearing type	Applicable standard		Applicable to	elerance class		Applicable table
Ball bearings	JIS B 1514	class 0	class 6	class 5	class 4	Table 3.3
Angular contact ball bearings		class 0	class 6	class 5	class 4	Table 3.3
Self-aligning ball bearings	standard)	class 0	class 6	class 5	class 4	Table 3.3

Note: JIS B 1514 and ISO 492 have the same specification level.

Table 3.3 Tolerances for radial ball bearings

Inner rings

Nomine diam	al bore neter		Single	e plar	ie me	an bo	re dic	amete	r dev	iation			Sing	le rad	ial pla	ane b	ore dic	amete	r varic	ition	
Ċ	l					$\triangle a$	lmp									V	ďąp				
m	m	cla	ss O	cla	ss 6	cla	ss 5	cla	ss 4 🔍	cla	ss 2 ⁰	class 0	diam class 6	eter se class 5	ries 9 class 4	class 2	class 0	axdiar class 6	neter s class 5	eries class 4	0.1 class 2
over	incl.	high	low	high	low	high	low	high	low	high	low			max.					max.		
10	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5
18	30	0	-10	0	-8	0	-6	0	-5	0	-2.5	13	10	6	5	2.5	10	8	5	4	2.5
30	50	0	-12	0	-10	0	-8	0	-6	0	-2.5	15	13	8	6	2.5	12	10	6	5	2.5
50	80	0	-15	0	-12	0	-9	0	-7	0	-4.0	19	15	9	7	4.0	19	15	7	5	4.0
80	120	0	-20	0	-15	0	-10	0	-8	0	-5.0	25	19	10	8	5.0	25	19	8	6	5.0

Nomine diam	al bore neter	bo	Single ore dia	radia mete	l plane r varia	e tion	bo	Mean re dia	single meter	plan varia	e tion	Ini	ner ring	g radi	al runo	out	Fac	ce run ith bor	out e
à	l	m	axdian	Vdp neter s	eries 2	,3,4			Vdmp					Kia				Sd	
m	m	class 0	class 6	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2
over	incl.			max.					max.					max.				max.	
10	18	6	5	4	3	2.5	6	5	3	2.0	1.5	10	7	4	2.5	1.5	7.0	3.0	1.5
18	30	8	6	5	4	2.5	8	6	3	2.5	1.5	13	8	4	3.0	2.5	8.0	4.0	1.5
30	50	9	8	6	5	2.5	9	8	4	3.0	1.5	15	10	5	4.0	2.5	8.0	4.0	1.5
50	80	11	9	7	5	4.0	11	9	5	3.5	2.0	20	10	5	4.0	2.5	8.0	5.0	1.5
80	120	15	11	8	6	5.0	15	11	5	4.0	2.5	25	13	6	5.0	2.5	9.0	5.0	2.5

Nomin diam	al bore neter	Inne runou	er ring o ut (with	axial side)				Inner ri	ing wid	dth dev	viation				Inn	er ring	width	varie	lion
C	l		Sia ²	·			nor	mal	\bigtriangleup	Bs		mod	ified [©]				VBs		
m	m	class 5	ss class cl 4		clas	s 0,6	clas	s 5,4	cla	ss 2	clas	s 0,6	clas	s 5,4	class	class	class 5	class	class
over	incl.			-	high	low	high	low	high	low	high	low	high	low	Ū	Ŭ	max.		-
10	18	7	3	1.5	0	-120	0	- 80	0	- 80	0	- 250	0	- 250	20	20	5	2.5	1.5
18	30	8	4	2.5	0	-120	0	-120	0	-120	0	-250	0	-250	20	20	5	2.5	1.5
30	50	8	4	2.5	0	-120	0	-120	0	-120	0	-380	0	-250	20	20	5	3.0	1.5
50	80	8	5	2.5	0	-150	0	-150	0	-150	0	-380	0	-250	25	25	6	4.0	1.5
80	120	9	5	2.5	0	-200	0	-200	0	-200	0	-380	0	-380	25	25	7	4.0	2.5

Note: ● The dimensional difference △ds of bore diameter to applied for class 4 and 2 is the same as the tolerance of dimentional difference △dmp of average bore diameter. However, the dimensional difference is applied to diameter series 0, 1, 2, 3 and 4 against Class 4, and to all the diameter series against Class 2.

• To be applied for deep groove ball bearing and angular contact ball bearings.

• To be applied for individual raceway rings manufactured for combined bearing use.

(Unit : μ m)

Technical Tables

GECO

Outer rings

Outer rin	gs																			(Unit	:μ m)
Nominal dian	Outside neter	S	ingle	plane	mea	n outs	ide d	iamet	er de	viatio	n		Sir	ngle rad	dial pla	ane out	side dia	imeter	variati	on	
L						$\triangle I$	Omp									VI	Dp				
													diam	eter se	ries 9	_	mo	axdian	neter :	eries (D.1
m	m	cla	ss O	cla	ss 6	clas	ss 5	cla	ss 4 [©]	cla	ss 2 [©]	class	class	class 5		class 2	class 0	class	class 5		class 2
over	incl.	high	low	high	low	high	low	high	low	high	low	U U	Ŭ	max.			Ŭ	Ŭ	max.		
6	18	0	-8	0	-7	0	-5	0	-4	0	-2.5	10	9	5	4	2.5	8	7	4	3	2.5
18	30	0	-9	0	-8	0	-6	0	-5	0	-4.0	12	10	6	5	4.0	9	8	5	4	4.0
30	50	0	-11	0	-9	0	-7	0	-6	0	-4.0	14	11	7	6	4.0	11	9	5	5	4.0
50	80	0	-13	0	-11	0	-9	0	-7	0	-4.0	16	14	9	7	4.0	13	11	7	5	4.0
80	120	0	-15	0	-13	0	-10	0	-8	0	-5.0	19	16	10	8	5.0	19	16	8	6	5.0
120	150	0	-18	0	-15	0	-11	0	-9	0	-5.0	23	19	11	9	5.0	23	19	8	7	5.0
150	180	0	-25	0	-18	0	-13	0	-10	0	-7.0	31	23	13	10	7.0	31	23	10	8	7.0
180	250	0	-30	0	-20	0	-15	0	-11	0	-8.0	38	25	15	11	8.0	38	25	11	8	8.0

Nominal dian	l Outside neter	Single ra	dial plan	e outside	diameter	variation	Single radial diamete	plane outside r variation	Me	an sing diame	gle plar eter va	ne outs riation	ide
L)			VDp			V	Dp ⁰			VDmp		
m	m	class	maxdia class	class	class	class	2,3,4	0,1,2,3,4	class	class	class	class	class
over	incl.	0	6 m	5 nax.	4	2	class 0	class 6	0	6	5 max.	4	2
6	18	6	5	4	3	2.5	10	9	6	5	3	2.0	1.5
18	30	7	6	5	4	4.0	12	10	7	6	3	2.5	2.0
30	50	8	7	5	5	4.0	16	13	8	7	4	3.0	2.0
50	80	10	8	7	5	4.0	20	16	10	8	5	3.5	2.0
80	120	11	10	8	6	5.0	26	20	11	10	5	4.0	2.5
120	150	14	11	8	7	5.0	30	25	14	11	6	5.0	2.5
150	180	19	14	10	8	7.0	38	30	19	14	7	5.0	3.5
180	250	23	15	11	8	8.0	—	—	23	15	8	6.0	4.0

(Unit : μ m)

Nominal diam	Outside eter	Ou	ter rin	g rad	ial run	out	Outs in	ide su clinati	rface on	O a	utside r xial run	ing out	Outer ring width deviation	Oute ve	r ring w ariatior	vidth า	
Ľ)			Kea				Sd			Sea		$\triangle cs$		Vcs		
m	m	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2	clas 5	s class 4	class 2		class 0,6	class 5	class 4	class 2
over	incl.			ma	x.			max.			max.		all type			max.	
6	18	15	8	5	3	1.5	8	4	1.5	8	5	1.5	Identical to	Identical to	5	2.5	1.5
18	30	15	9	6	4	2.5	8	4	1.5	8	5	2.5	$\triangle Bs$ of inner	$\triangle Bs$ and Vbs	5	2.5	1.5
30	50	20	10	7	5	2.5	8	4	1.5	8	5	2.5	bearing	ring of same	5	2.5	1.5
50	80	25	13	8	5	4.0	8	4	1.5	10	5	4.0	_	bearing	6	3.0	1.5
80	120	35	18	10	6	5.0	9	5	2.5	11	6	5.0			8	4.0	2.5
120	150	40	20	11	7	5.0	10	5	2.5	13	7	5.0			8	5.0	2.5
150	180	45	23	13	8	5.0	10	5	2.5	14	8	5.0			8	5.0	2.5
180	250	50	25	15	10	7.0	11	7	4.0	15	10	7.0			10	7.0	4.0

Note: \bigcirc The dimensional difference $\triangle D_s$ of outer diameter to be applied for classes 4 and 2 is the same as the tolerance of dimensional difference $\triangle Dmp$ of average outer diameter. However, the dimensional difference is applied to diameter series 0,1.2.3 and 4 against Class 4, and also to all the diameter series against Cfass 2.
To be applied in case snap rings are not installed on the bearings.
To be applied for Deep Groove Ball Bearings and Angular Contact Ball Bearings.

POWERTEK

3.2 Chamfer measurements and tolerance or allowable values of tapered bore

			3	(Unit: µm)
rs min 1 or	Nomin diameter "d" or n	al bore 2 of bearing cominal	rs max c Radial	or rs max Axial
rs min	over	incl.	direction	direction
0.3	-	40	0.7	1.4
0.3	40	-	0.9	1.6
0.6	-	40	1.1	1.7
0.6	40	-	1.3	2.0
1.0	-	50	1.6	2.5
1.0	50	-	1.9	3.0
1.5	-	120	2.3	3.0
1.5	120	250	2.8	3.5
1.5	250	-	3.5	4.0
2.0	-	120	2.8	4.0
2.0	120	250	3.5	4.5
2.0	250	-	4.0	5.0
2.5	-	120	3.5	5.0
2.5	120	250	4.0	5.5
2.5	250	-	4.5	6.0
3.0	-	120	4.0	5.5
3.0	120	250	4.5	6.5
3.0	250	400	5.0	7.0
3.0	400	-	5.5	7.5
4.0	-	120	5.0	7.0
4.0	120	250	5.5	7.5
4.0	250	400	6.0	8.0
4.0	400	-	6.5	8.5
5.0	-	180	6.5	8.0
5.0	180	-	7.5	9.0
6.0	-	180	7.5	10.0
6.0	180	-	9.0	11.0

Table 3.4 Allowable critical-value of bearing chamfer

4. Bearing fits

4.1 Interference

For rolling bearings, inner and outer rings are fixed on the shaft or in the housing so that relative movement does not occur between fitted surfaces during operation or under load. This relative movement (referred to as "creep") between the fitted surfaces of the bearing and the shaft or housing can occur in a radial direction, an axial direction, or in the direction of rotation. To help prevent this creeping movement, bearing rings and the shaft or housing are installed with one of three interference fits, a "tight fit" (also called shrink fit), "transition fit," or "loose fit" (also called clearance fit), and the degree of interference between their fitted surfaces varies.

The most effective way to fix the fitted surfaces between a bearing's raceway and shaft or housing is to apply a "tight fit." The advantage of this tight fit for thin walled bearings is that it provides uniform load support over the entire ring circumference without any loss of load carrying capacity. However, with a tight fit, ease of installation and disassembly is lost; And when using a non-separable bearing as the floating-side bearing, axial displacement is not possible. For this reason, a tight fit cannot be recommended in all cases.

Technical Tables

POWERTEK

GECO®

$4.2\ {\rm The\ necessity\ of\ a\ proper\ fit}$

In some cases, improper fit may lead to damage and shorten bearing life, therefore it is necessary to make a careful analysis in selecting a proper fit. Some of the negative conditions caused by improper fit are listed below.

- Raceway cracking, early peeling and displacement of raceway
- Raceway and shaft or housing abrasion caused by creeping and fretting corrosion
- Seizing caused by loss of internal clearances
- Increased noise and lowered rotational accuracy due to raceway groove deformation

4.3 Fit selection

Selection of a proper fit is dependent upon thorough analysis of bearing operating conditions, including consideration of:

- Shaft and housing material, wall thickness, finished surface accuracy, etc.
- Machinery operating conditions (nature and magnitude of load, rotational speed, temperature, etc.)

4.3.1 "Tight fit," "transition fit," or "loose fit"

For raceways under rotating loads, a tight fit is necessary. (Refer to Table 4.1) "Raceways under rotating loads" refers to raceways receiving loads rotating relative to their radial direction. For raceways under static loads, on the other hand, a loose fit is sufficient. (Example) Rotating inner ring load the direction of the radial load on the inner ring is rotating relatively.

For non-separable bearings, such as Deep Groove Ball Bearings, it is generally recommended that either the inner ring or outer ring be given a loose fit.

Illustration	Bearing rotation	Ring load	Fit
Static load	Inner ring: Rotating Outer ring: Stationary	Rotating inner ring load	Inner ring: Tight fit
Unbalanced load	Inner ring: Stationary Outer ring: Rotating	Static outer ring load	Outer ring: Loose fit
Static load	Inner ring: Stationary Outer ring: Rotating	Static inner ring load	Inner ring: Loose fit
Unbalanced load	Inner ring: Rotating Outer ring: Stationary	Rotating outer ring load	Outer ring: Tight fit

Table 4.1 Radial load for ball bearings

Technical Tables

4.3.2 Recommended Fits

The system of limits and fits define the tolerances of the outside diameter of the shaft or the bore diameter of a housing (the shaft or housing to which a metric bearing is installed). Bearing fit is governed by the selection of tolerances for the shaft outside diameter and housing bore diameter. Fig. 3.1 summarizes the interrelations between shaft outside diameter and bearing bore diameter, and between housing bore diameter and shaft outside diameter. Table 3.2 provides the recommended fits for common radial needle roller bearings (machined ring needle roller bearings with inner ring), relative to dimensions and loading conditions. Table 3.3 is a table of the numerical value of fits.

4.3.3 Interference minimum and maximum values

The following points should be considered when it is necessary to calculate the interference for an application:

- In calculating the minimum required amount of interference keep in mind that: 1) interference is reduced by radial loads
 - 2) interference is reduced by differences between bearing temperature and ambient temperature
- 3) interference is reduced by variation of fitted surfaces

• Maximum interference should be no more than 1:1000 of the shaft diameter or outer diameter. Required interference calculations are shown below.

4.3.3.1 Fitted surface variation and required interference

Interference between fitted surfaces is reduced by roughness and other slight variations of these surfaces which are flattened in the fitting process. The degree of reduced interference depends upon the finish treatment of these surfaces, but in general it is necessary to assume the following interference reductions.

For ground shafts: $1.0 \sim 2.5 \ \mu m$ For lathed shafts : $5.0 \sim 7.0 \ \mu m$

4.3.3.2 Maximum interference

When bearing rings are installed with an interference fit, tension or compression stress may occur along their raceways. If interference is too great, this may cause damage to the rings and reduce bearing life. For these reasons, maximum interference should not exceed the previously mentioned ratio of 1:1,000 of the shaft or outside diameter.

Fig. 4.1

(Unit : μ m)

GECO°-

5. Bearings internal clearance

Bearings internal clearance (initial clearance) is the amount of internal clearance a bearing has before being installed on a shaft or in a housing. The internal clearance valves for GECO ball bearing classes are shown in tables 5.1 to 5.5

Nominal bo d (r	re diameter nm)		C2	c	:N	c	23	C	24	c	25
over	incl.	min.	max.								
6	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140

Table 5.1 Radial internal clearance of ball bearings

(Unit : μ m)

Nominal bo	re diameter		Bearing with cylindrical bore							
d (r	nm)	C	2	No	rmal	C	C3		C4	
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.	
6	10	2	9	6	17	12	25	19	33	
10	14	2	10	6	19	13	26	21	35	
14	18	3	12	8	21	15	28	23	37	
18	24	4	14	10	23	17	30	25	39	
24	30	5	16	11	24	19	35	29	46	
30	40	6	18	13	29	23	40	34	53	
40	50	6	19	14	31	25	44	37	57	
50	65	7	21	16	36	30	50	45	69	
65	80	8	24	18	40	35	60	54	83	

(Unit : μ m)

diameter		Bearing with tapered bore							
1)	C	2	No	Normal		C3		C4	
incl.	min.	max.	min.	max.	min.	max.	min.	max.	
10	_	-	—	-	_	_	_	_	
14	_	_	—	_	—	-	_	_	
18	-	-	—	—	_	-	_	-	
24	7	17	13	26	20	33	28	42	
30	9	20	15	28	23	39	33	50	
40	12	24	19	35	29	46	40	59	
50	14	27	22	39	33	52	45	65	
65	18	32	27	47	41	61	56	80	
80	23	39	35	57	50	75	69	98	
	diameter) incl. 10 14 18 24 30 40 50 65 80	diameter C incl. min. 10 — 14 — 18 — 24 7 30 9 40 12 50 14 65 18 80 23	diameter C2 incl. min. max. 10 14 18 24 7 17 30 9 20 40 12 24 50 14 27 65 18 32 80 23 39	diameter C2 Nor incl. min. max. min. 10 - - - 14 - - - 18 - - - 24 7 17 13 30 9 20 15 40 12 24 19 50 14 27 22 65 18 32 27 80 23 39 35	diameter Bearing with Incl. min. max. Mormal 10 — — — — 14 — — — — — 18 — — — — — 24 7 17 13 26 30 9 20 15 28 40 12 24 19 35 50 14 27 22 39 65 18 32 27 47 80 23 39 35 57	Bearing with tapered borec2NormalC2incl.min.max.min.max.10 $$ $$ $$ $$ 14 $$ $$ $$ $$ 18 $$ $$ $$ $$ 2471713262030920152823401224193529501427223933651832274741802339355750	Bearing with topered boren)C2NormalC3incl.min.max.min.max.101418182471713262033309201528233940122419352946501427223933526518322747416180233935575075	Bearing with tapered boren)C2NormalC3Cincl.min.max.min.max.min.max.10 $ -$ 14 $ -$ 18 $ -$ 2471713262033283092015282339334012241935294640501427223933524565183227474161568023393557507569	

Table 5.3 Radial internal clearance for self-aligning Ball Bearings (for bearing with tapered bore)

Table 5.4 Radial internal clearance of double row angular contact ball bearings

Nominal boi d (n	re diameter nm)	c	:2	Normal		al C3		C4	
over	incl.	min.	max.	min.	max.	min.	max.	min.	max.
-	10	6	12	8	15	15	22	22	30
10	18	6	12	8	15	15	24	30	40
18	30	6	12	10	20	20	32	40	55
30	50	8	14	14	25	25	40	55	75

Table 5.5 Radial internal clearance of ball bearings (60, 62 and 63 series) for electric motor

			(Unit : μ m)		
Nominal bore	<mark>e diamete</mark> r	Radial internal	clearance CM		
d (m	m)	Deep groove ball bearings			
over	incl.	min.	max.		
10(incl.)	18	4	11		
18	24	5	12		
24	30	5	12		
30	40	9	17		
40	50	9	17		
50	65	12	22		
65	80	12	22		

6. Lubrication

6.1 Lubrication of rolling bearings

The purpose of bearing lubrication is to prevent direct metallic contact between the various rolling and sliding elements. This is accomplished through the formation of a thin oil (or grease) film on the contact surfaces. However, for rolling bearings, lubrication has the following advantages:

(1) Friction and wear reduction

(2) Friction heat dissipation

(3) Prolonged bearing life

(4) Prevention of rust

(5) Protection against harmful elements

012

(Unit : μ m)

GECO

In order to achieve the above effects, the most effective lubrication method for the operating conditions must be selected. Also a good quality, reliable lubricant must be selected. In addition, an effectively designed sealing system that prevents the intrusion of damaging elements (dust, water, etc.) into the bearing interior, removes other impurities from the lubricant, and prevents lubricant from leaking to the outside, is also a requirement.

Almost all rolling bearings use either grease or oil lubrication methods, but in some special applicatic solid lubricant such as molybdenum disulfide or graphite may be used.

6.2 Grease lubrication

Grease type lubricants are relatively easy to handle require only the simplest sealing devices for these reasons, grease is the most widely used lubricant rolling bearings.

6.2.1 Types and characteristics of grease

Lubricating grease are composed of either a mineral base or a synthetic oil base. To this base a thicks other additives are added. The properties of all greases are mainly determined by the kind of base oil use the combination of thickening agent and various additives.

Standard greases and their characteristics are Table 6.2. As performance characteristics of even same type of grease will vary widely from brand, it is best to check the manufacturers' data when selecting a grease.

6.3 Lubrication methods and characteristics

The lubrication methods come in two general methods: grease or oil, each with their own characteristics. These characteristics are shown in Table 6.1

Method	Grease Iubrication	Oil lubrication
Handling	Very good	Fair
Reliability	Good	Very good
Cooling effect	Poor	Good (circulation necessary)
Seal structure	Good	Fair
Power loss	Good	Good
Environment contamination	Good	Fair
High speed rotation	Poor	Good

Table 6.1 Comparison of grease lubrication and oil lubrication characteristics

6.4 Grease lubrication

Grease type lubricants are relatively easy to handle and require only the simplest sealing devices. For these reasons, grease is the most widely used lubricant for rolling bearings.

6.4.1 Types and characteristics of grease

Lubricating grease are composed of either a mineral ol base or a synthetic oil base. To this base a thickener and other additives are added. The properties of all greases are mainly determined by the kind of base oil used and by the combination of thickening agent and various additives.

Standard greases and their characteristics are listed in Table 6.2 as performance characteristics of even the same type of grease will vary widely from brand to brand, it is best to check the manufacturers' data when selecting a grease.

Also, greases of different brands should not be mixed because of the different additives they contain.

Technical Tables

However, if different greases must be mixed, at least greases with the same base oil and thickening agent should be selected. But even when greases of the samel base oil and thickening agent are mixed, the quality of U grease may still change due to the difference in additives. For this reason, changes in consistency and other qualities should be checked before being applied.

Table 6.2 Grease varieties and characteristics

Grease name		Lithium grease		Sodium grease (Fiber grease)	Calcium compound base grease
Thickener		Li soap	Na soap	Ca+Na soap Ca+Li soap	
Base oil	Mineral oil	Diester oil	Silicone oil	Mineral oil	Mineral oil
Dropping poin °C	170 ~ 190	170 ~ 190	200 ~ 250	150 ~ 180	150 ~ 180
Operating temperature range °C	-30 ~ +130	-50 ~ +130	-50 ~ +160	-20 ~ +130	-20 ~ +120
Mechanical stability	Excellent	Good	Good	Excellent ~ Good	Excellent ~ Good
Pressure resistance	Good	Good	poor	Good	Excellent ~ Good
Water resistance	Good	Good	Good	Good ~ poor	Good ~ poor
Applications	Widest range of applications. Grease used in all types of rolling bearings.	Excellent low temperature and wear characteristics. Suitable for small sized and miniature bearings.	Suitable for high and low temperatures. Unsuitable for heavy load applications due to low oil film strength.	Some emulsification when water is introduced. Excellent characteristics at relatively high temperatures.	Excellent pressure resistance and mechanical stability. Suitable for bearings receiving shock loads.

Grease name	Aluminum grease	Non-soap base grease Thickener			
Thickener	Thickener Al soap		Bentone, silica gel, urea, carbon black, fluorine compounds, etc.		
Base oil	Mineral oil	Mineral oil	Synthetic oil		
Dropping poin °C	70 ~ 90	250 or above	250 or above		
Operating temperature range °C	-10 ~ +80	-10 ~ +130	-50 ~ +200		
Mechanical stability	Good ~ poor	Good	Good		
Pressure resistance	Good	Good	Good		
Water resistance	Good	Good	Good		
Applications	Excellent viscosity characteristics. Suitable for bearings subjected to vibrations.	Can be used in a wid high temperatures. Sh resistance, cold resist resistance, and other when matched with a and thickener.	le range of low to nows excellent heat ance, chemical characteristics a suitable base oil		
		Grease used in all typ	es of rolling bearings.		

6.4.2 Amount of grease

The amount of grease used in any given situation will depend on many factors relating to the size and shaped the housing, space limitations, bearing's rotating speed and type of grease used.

As a general rule, housings and bearings should be only filled from 50% to 80% of their capacities.

Where speeds are high and temperature rises need to be kept to a minimum, a reduced amount of grease should be used. Excessive amounts of grease cause temperature rise which in turn causes the grease to soften and may allow leakage. With excessive grease fills oxidation and deterioration may cause lubricating efficiency to be lowered.

POWERTEK

GECO[®]

Moreover, the standard bearing space can be found by below formula (6.1)

 $V = K \cdot W$ Formula (6.1)

where,

V : Quantity of bearing space open type (approx.) cm³

K : Bearing space factor (Table 6.3)

W: Mass of bearing kg (See bearing tables)

Table 6.3 Bearings space ratio K

Bearing type	Retainer type	K
Pallboaring	Pressed or Machined	25
	retainer	- 55

7. Load rating and life

7.1 Bearing life

Even in bearings operating under normal conditions, the surfaces of the raceway and rolling elements are constantly being subjected to repeated compressive stresses which causes flaking of these surfaces to occur. This flaking is due to material fatigue and will eventually cause the bearings to fail. The effective life of a bearing is usually defined in terms of the total number of revolutions a bearing can undergo before flaking of either the raceway surface or the olling element surfaces occurs.

Other causes of bearing failure are often attributed to problems such as seizing, abrasions, cracking, chipping, gnawing, rust, etc. However, these so called "causes" of bearing failure are usually themselves caused by improper installation, insufficient or improper lubrication, faulty sealing or inaccurate bearing selection. Since the above mentioned "causes" of bearing failure can be avoided by taking the proper precautions, and are not simply caused by material fatigue, they are considered separately from the flaking aspect.

7.2 Basic rating life and basic dynamic load rating

A group of seemingly identical bearings when subjected to identical load and operating conditions will exhibit a wide diversity in their durability.

This "life " disparity can be accounted for by the difference in the fatigue of the bearing material itself. This disparity is considered statistically when calculating bearing life, and the basic rating life is defined as follows.

The basic rating life is based on a 90% statistical model which is expressed as the total number of revolutions 90% of the bearings in an identical group of bearings subjected to identical operating conditions will attain or surpass before flaking due to material fatigue occurs. For bearings operating at fixed constant speeds, the basic rating life (90% reliability) is expressed in the total number of hours of operation.

GECO

The basic dynamic load rating is an expression of the load capacity of a bearing based on a constant load which the bearing can sustain for one million revolutions (the basic life rating). For radial bearings this rating applies to pure radial loads, and for thrust bearings it refers to pure axial loads. The basic dynamic load ratings given in the bearing tables of this catalog are for bearings constructed of GECO standard bearing materials, using standard manufacturing techniques. Please consult GECO e ngineering for basic load ratings of bearings constructed of special materialsor using special manufacturing techniques.

The relationship between the basic rating life, the basic dynamic load rating and the bearing load is given in formula (7.1).

Ball bearings

n

$$L_{10} = \left(\frac{C}{P}\right)^{P}$$
.....(7.1)

where.

P = 3 For ball bearings

- L10: Basic rating life 106 revolutions
 - C: Basic dynamic rating load, n(Cr: radial bearings)
 - P: Equivalent dynamic load, n(Pr: radial bearings)

The basic rating life can also be expressed in terms of hours of operation (revolution), and is calculated as shown in formula (7.2).

 $L10h = 500 fh^{p}$(7.2)

$$f_{\rm h} = f_{\rm n} \frac{C}{P}$$
....(7.3)

$$f_n = \left(\frac{33.3}{n}\right)^{1/p}$$
....(7.4)

where.

L10: Basic rating life, h

 f_h : Life factor

 f_n : Speed factor

n : Rotational speed, r/min

Roller bearings

Fig. 7.1 Bearing life rating scale

Formula (7.2) can also be expressed as shown in formula (7.5).

$$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{P} \dots (7.5)$$

The relationship between rotational speed n and speed factor fn as well as the relation between the basic rating life L10h and the life factor fn is shown in Fig. 7.1. When several bearings are incorporated in machines or equipment as complete units, all the bearings in the unit are considered as a whole when computing bearing life (see formula 7.6). The total bearing life of the unit is a life rating based on the viable lifetime of the unit before even one of the bearings fails due to rolling contact fatigue.

Technical Tables

POWERTEK

GECO°-

where, e = 10/9.....For ball bearings L = Total basic rating life or entire unit, h $L_1, L_2...L_n$: Basic rating life or individual bearings, 1, 2,...n, h

When the load conditions vary at regular intervals, the life can be given by formula (7.7). $L_m = (\Sigma \phi_j / L_j)^{-1}$(7.7)

where,

 Φj : Frequency of individual load conditions

Lj : Life under individual conditions

7.3 Machine applications and requisite life

When selecting a bearing, it is essential that the requisite life of the bearing be established in relation to the operating conditions. The requisite life of the bearing is usually determined by the type of machine in which the bearing will be used, and duration of service and operational reliability requirements. When determining bearing size, the fatigue life of the bearing is an important factor; however, besides bearing life, the strength and rigidity of the shaft and housing must also be taken into consideration.

7.4 Adjusted life rating factor

The basic bearing life rating (90% reliability factor) can be calculated through the formulas mentioned earlier in Section 7.2. However, in some applications a bearing fife factor of over 90% reliability may be required. To meet these requir ements, bearing life can be lengthened by the use of specially improved bearing materials or special construction techniques. Moreover, according to elastohydrodynamic lubrication theory, it is clear that the bearing operating conditions (lubrication, temperature, speed, etc.) all exert an effect on bearing life. All these adjustment factors are taken into consideration when calculating bearing life, the adjusted bearing life can be determined.

 $L_{na} = a1 \cdot a2 \cdot a3 \cdot (C/P)^P \dots (7.8)$

where,

- *Lna*: Adjusted life rating in millions of revolutions (10⁶)(adjusted for reliability, material and operating conditions)
- *a1* : Reliability adjustment factor
- *a2* : Material adjustment factor
- *a3* : Operating condition adjustment factor

7.4.1 Life adjustment factor for reliability a_1

The values for the reliability adjustment factor ai (for a reliability factor higher than 90%) can be found in Table 7.1

Reliability %	Ln	Reliability factor a1
90	L10	1.00
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	Li	0.21

Table 7.1 Reliability adjustment factor values *a*₁

GECO°-

7.4.2 Life adjustment factor for material a_2

The life of a bearing is affected by the material type and quality as well as the manufacturing process. In this regard, the life is adjusted by the use of an a_2 factor.

The basic dynamic load ratings listed in the catalog are based on GECO's standard material and process, therefore, the adjustment factor $a_2 = 1$. When special materials or processes are used the adjustment factor can be larger than 1.

GECO bearings can generally be used up to 120. C.If bearings are operated at a higher temperature, the bearing must be specially heat treated (stabilized) so that inadmissible dimensional change does not occur due to changes in the micro-structure. This special heat treatment might cause the reduction of bearing life because of a hardness change.

7.4.3 Life adjustment factor as for operating conditions

The operating conditions life adjustment factor *a*³ is used to adjust for such conditions as lubrication, operating temperature, and other operation factors which have an effect on bearing life.

Generally speaking, when lubricating conditions are satisfactory, the *as* factor has a value of one; and when lubricating conditions are exceptionally favorable, and all other operating conditions are normal, as can have a value greater than one.

However, when lubricating conditions are particularly unfavorable and the oil film formation on the contact surfaces of the raceway and rolling elements is insufficient, the value of *as* becomes less than one. This Insufficient oil film formation can be caused, for example, by the lubricating oil viscosity being too low for the operating temperature (below13 mm2/s for ball bearings or by exceptionally low rotational speed (nr/min x dpmm less than 10,000). For bearings used under special operating conditions, please consult GECO engineering.

As the operating temperature of the bearing increases, the hardness of the bearing material decreases. Thus, the bearing life correspondingly decreases. The opera-ting temperature adjustment values are shown in Fig.7.2.

7.5 Life of bearing with oscillating motion The life of a radial bearing with oscillating motion can be calculated according to formula (7.9).

 $Losc = \Omega \text{ LRot} \dots (7.9)$

where,

Losc : life for oscillating bearing

L_{Rot} : rating life at assumed number of rotations same as oscillation cycles

 $\Omega~$: oscillation factor (Fig.7.3 indicates the relationship between half oscillation angle $~\beta~$ and $~\Omega$).

Technical Tables

POWERTEK

GECO

Fig. 7.3 is valid only when the amplitude exceeds a certain degree (critical angle $2\beta c$). The critical angle is determined by the internal design of the bearing, in particular by the number of rolling elements in one row. Critical angle values are given in Table 7.3. When the magnitude of the oscillation is less than the critical angle, the life may be shorter than that calculated to be the value in Fig.7.3 It is safer to calculate life with the factor Ω corresponding to the critical angle. For the critical angle of an individual bearing, please consult GECO Engineering. Where the amplitude of the oscillation 2β is small, it is difficult for a complete lubricant film to form on the contact surfaces of the rings and rolling elements, and fretting corrosion may occur. Therefore it is necessary to exercise extreme care in the selection of bearing type, lubrication and lubricant.

Table 7.3 Critical angle

Number of rolling elements	Half critical angle βc
10	10°
25	4°
40	2.6°

7.6 Life of bearing with linear motion With a linear motion bearing such as a linear ball bearing or linear flat roller bearing, the relation among the axial travel distance, bearing load, and load rating is expressed by formulas (7.10).

When the rolling elements are rollers:

$$L = 100 \text{ X} \left(\frac{C_r}{P_r}\right)^{\frac{10}{3}}....(7.10)$$

where,

L	: Load rating	km
Cr	: Basic dynamic load rating	[kgf]
Pr	: Bearing load	[kgf]

If the cycle and travel distancewithin a particular travel motion remain constant, the rating life of the bearing can be determined by formulas (7.11).

$$Lh = \frac{50 \times 10^3}{10 \cdot \text{S}} \left(\frac{C_r}{P_r}\right)^{\frac{10}{3}}....(7.11)$$

Where,

- Lh: Travel life, h
- S : Travel distance per minute, m/min. $S = 2 \cdot L \cdot N$
- L : Stroke length, m
- n : Stroke cycle, N{kgf}

Fig. 7.3 Relationship between half angle $~\beta$ and factor $~\Omega$

Fig. 7.4 summarizes the relation between Cr/Pr and L.

Fig. 7.4 Life of bearing with axial motion

7.7 Basic static load rating

When stationary rolling bearings are subjected to static loads, they suffer from partial permanent deformation of the contact surfaces at the contact point between the rolling elements and the raceway. The amount of deformity increases as the load increases, and if this increase in load exceeds certain limits, the subsequent smooth operation of the bearings is impaired.

It has been found through experience that a permanent deformity of 0.0001 times the diameter of the rolling element, occurring at the most heavily stressed contact point between the raceway and the rolling elements, can be tolerated without any impairment in running efficiency.

The basic rated static load refers to a fixed static load limit at which a specified amount of permanent deformation occurs. It applies to pure radial loads for radial bearings and to pure axial loads for thrust bearings. The maximum applied load values for contact stress occurring at the rolling element and raceway contact points are given below.

For Ball Bearings	4,200 Mpa
(except Self-aligning Ball Bearings)	
For Self-aligning Ball Bearings	4,600 Mpa

7.8 Allowable static equivalent load

Generally the static equivalent load which can be permitted is limited by the basic static rated load as stated in Section 7.7. However, depending on requirements regarding friction and smooth operation, these limits may be greater or lesser than the basic static rated load.

In the following formula (7.12) and Table 6.4 the safety factor S_0 can be determined considering the maximum static equivalent load.

 $So = Co / Po \dots (7.12)$

where,

- So : Safety factor
- Co: Basic static rated load, N
 - (radial bearings: Cor, thrust bearings: Coa)
- Pomax : Maximum static equivalent load, N

(radial: Por max, thrust: Coa max)

Table 7.4 Minimum safety factor values So

Operating conditions	Ball bearings	Roller bearings
High rotational accuracy demand	2.0	3.0
Normal rotating accuracy demand (Universal application)	1.0	1.5
Slight rotational accuracy deterioration permitted (Low speed, heavy loading, etc.)	0.5	1.0

Note 1 : For drawn-cup spherical roller bearings, min. So value=3.

2: When vibration and/or shock loads are present, a load factor based on the shock load needs to be included in the *P*₀ max value.

Technical Tables

GECO®

8. Bearing handling

Bearings are precision parts and, in order to preserve their accuracy and reliability, care must be exercised in their handling. In particular, bearing cleanliness must be maintained, sharp impacts avoided, and rust prevented.

8.1 Bearing storage

Most rolling bearings are coated with a rust preventative before being packed and shipped, and they should be stored at room temperature with a relative humidity of less than 60%.

8.2 Installation

When bearings are being installed on shafts or in housings, the bearing rings should never be struck directly with a hammer or a drift, as shown in Fig. 8.1, because damage to the bearing may result. Any force applied to the bearing should always be evenly distributed over the entire bearing ring face.

8.2.1 Installation preparations

Bearings should be fitted in a clean, dry work area. Especially for small and miniature bearings, a "clean room" should be provided as any contamination particles in the bearing will greatly affect bearing efficiency. Before installation, all fitting tools, shafts, housings, and related parts should be cleaned and

any burrs or cutting chips removed if necessary. Shaft and housing fitting surfaces should also be checked for roughness, dimensional and design accuracy, and to ensure that they are within allowable tolerance limits.

Bearings should not be unwrapped until just prior to installation. Normally, bearings to be usedwith grease lubricant can be installed as is, without removing the rust preventative. However, for bearings which will use oil lubricant, or in cases where mixing the grease and rust preventative would result in loss of lubrication efficiency, the rust preventative should be removed by washing with benzene or petroleum solvent and dried before installation. Bearings should also be washed and dried before installation if the package has been damaged or there are other chances that the bearings have been contaminated. Double shielded bearings and sealed bearings, one way clutches should never be washed.

8.2.2 Installing cylindrical bore bearings

Bearings with relatively small interference fits can be press fit at room temperature by using a sleeve against the inner ring face as shown in Fig. 8.2. Usually, bearings are installed by striking the sleeve with a hammer; however, when installing a large number of bearings, a mechanical or hydraulic press should be used.

When installing non-separable bearings on a shaft and in a housing simultaneously, a pad which distributesth fitting pressure evenly over the inner and outer rings is used as shown in Fig. 8.3. When fitting bearings which have a large inner ring interference fit, or when fitting bearings on shafts that have a large diameter, a considerable amount of force is required to install the bearing at room temperature. Installation can be facilitated by heating and expanding the inner ring beforehand. The required relative temperature difference between the inner ring and the fitting surface depends on the amount of interference and the shaft fitting surface diameter. Fig. 8.4 shows the relation between the bearing inner bore diameter temperature differential and the amount of thermal expansion. In any event, bearings should never be heated above 120°C.

Fig. 8.4 Removal of inner ring using an induction heater

The most commonly used method of heating bearings is to immerse them in hot oil. However, this method should not be used for prelubricated shielded and sealed bearings. To avoid overheating parts of the bearings they should never be brought into direct contact with the heat source, but instead should be suspended inside the heating tank orplacedonawire grid. If bearings are dry-heated with a heating cabinet or hot plate, they can be mounted without drying. An induction heater can be used to quickly heat bearings in a dry state (always demagnetize). When heated bearings are installed on shafts, the inner rings must be held against the shaft abutment until the bearing has been cooled in order to prevent gaps from occurring between the ring and the abutment face.

8.2.3 Installation of outer ring

Even for tight interference fits, the outer rings of small type bearings can be installed by driving them into housings at room temperature. For large type bearings, the housing can be heated before installing the bearing, or the bearing's outer ring can be cooled with dry ice, etc. Before installing. If dry ice or other cooling agent is used, atmospheric moisture will condense on bearing surfaces, and therefore appropriate rust preventative measures are necessary.

8.3 Post installation running test

To insure that the bearing has been properly installed, a running test is performed after installation is completed. The shaft or housing is first rotated by hand and if no problems are observed a low speed, no load power test is performed. If no abnormalities are observed, the load and speed are gradually increased to operating conditions. During the test if any unusual noise, vibration, or temperature rise is observed the test should be stopped and the equipment examined. If necessary, the bearing should be disassembled for inspection. To check bearing running noise, the sound can be amplified and the type of noise ascertained with a listening instrument placed against the housing. A clear, smooth and continuous running sound is normal. A high, metallic or irregular sound indicates some error in function.

Technical Tables

GECO°-

Vibration can be accurately checked with a vibration measuring instrument, and the amplitude and frequency characteristics measured against a fixed standard. Usually the bearing temperature can be estimated from the housing surface temperature, However, if the bearing outer ring is accessible through oil inlets, etc., the temperature can be more accurately measured. Under normal conditions, bearing temperature rises with rotation time and then reaches a stable operating temperature after a certain period of time. If the temperature does not level off and continues to rise, or if there is a sudden temperature rise, or if the temperature is unusually high, the bearing should be inspected.

8.4 Bearing disassembly

Bearings are often removed as part of periodic inspection procedures or during the replacement of other parts. However, the shaft and housing are almost always reinstalled, and in more than a few cases the bearings themselves are reused. These bearings, shafts, housings, and other related parts must be designed to prevent damage during disassembly procedures, and the proper disassembly tools must be employed. When removing inner and outer rings which have been installed with interference fits, the dismounting force should be applied to that ring only and not applied to other parts of the bearing, as this may cause internal damage to the bearing's raceway or rolling elements.

8.4.1 Disassembly of bearings with cylindrical bores

For small type bearings, the pullers shown in Fig. 8.5 or the press method shown in Fig. 8.6 can be used for disassembly. When used properly, these methods can improve disassembly efficiency and prevent damage to bearings. To facilitate disassembly procedures, attention should be given to planning the designs of shafts and housings, such as providing extraction grooves on the shaft and housing for puller claws as shown Figs. 8.7 and 8.8. Threaded bolt holes should also be provided in housings to facilitate the pressing out of outer rings as shown in Fig. 8.9.

disassembly

Ħ

Fig. 8.9 Outer ring disassembly bolt

GECO°-

9. Allowable speed

As bearing speed increases, the temperature of the bearing also increases due to friction heat generated in the bearing interior. If the temperature continues to rise and exceeds certain limits, the efficiency of the lubricant start to fail down drastically, and the bearing can no longercontinue to operate in a stable manner. Therefore, the maximum speed at which it is possible for the bearing to continuously operate without the generation of excessive heat beyond specified limits, is called the allowable speed (r/min). The allowable speed of a bearing depends on the type of bearing, bearing dimensions, type of cage, load, lubricating conditions, and cooling conditions.

The allowable speeds listed in the bearing tables for grease and oil lubrication are for standard **GECO** bearings under normal operating conditions, correctly installed, using the suitable lubricants with adequate supply and proper maintenance. Moreover, these values are based on normal load conditions ($P \le 0.09C$, Fa/Fr ≤ 0.3). For ball bearings with contact seals (LLU type), the allowable speed is determined by the peripheral lip speed of the seal.

For bearings to be used under heavier than normal load conditions, the allowable speed values listed in the bearing tables must be multiplied by an adjustment factor. The adjustment factors f_L and f_c are given in Figs. 9.1 and 9.2.

Also, when radial bearings are mounted on vertical shafts, lubricant retentions and cage guidance are not favorable compared to horizontal shaft mounting.

Therefore, the allowable speed should be reduced to approximately 80% of the listed speed.

It is possible to operate precision bearings with high speed specification cages at speeds higher than those listed in the bearing tables, if special precautions are taken. These precautions should include the use of forced oil circulation methods such as oil jet or oil mist lubrication.

Under such high speed operating conditions, when special care is taken, the standard allowable speeds given in the bearing tables can be adjusted upward. The maximum speed adjustment values, /B, by which the bearing table speeds can be multiplied, are shown in Table 9.1. However, for any application requiring speeds in excess of the standard allowable speed, please consult GECO Engineering.

Fig.9.2 Value of adjustment factor Fc depends on combined load

Table 9.1 Adjustment factor, $f_{\rm B}$, for allowable number of revolutions

Type of bearing	Adjustment factor f_B
Deep groove ball bearings	3.0
Angular contact ball bearings	2.0

POWERTEK

GECO

10. Vibration and noise value

GECO also supplies bearings for air conditioners, domestic ceiling fans and electric power tools etc. As a rule, the vibration or noise level of these bearings should be carefully controlled and checked. To be a part of our quality control system, **GECO** well equipped with two types of testing instrument S0910-1 (For standard application) and BVT1-1A (For precision or quiet applications). Relatively, here it gives out both vibration and noise standard of these bearings for your reference (Please refer to Table 10.1).

The vibration and noise of **GECO** bearings are classified in three classes as Z1, Z2 and Z3, it is measured by the instruments of SO910-1. Details please find in the following Table 10.1.

Inner				Vibration	acceleration	(SO910-1)				
bores		60 Series		62 Series				63 Series		
(mm)	Z1≤	Z2 ≤	Z3 ≤	Z1≤	Z2 ≤	Z3 ≤	Z1≤	Z2 ≤	Z3 ≤	
4	34	32	28	35	32	30	36	33	31	
5	36	34	30	37	34	32	37	35	33	
6	36	34	30	37	34	32	37	35	33	
7	38	35	31	38	36	34	-	-	-	
8	38	35	31	38	36	34	-	-	-	
9	40	36	32	40	37	35	-	-	-	
10	42	38	33	42	39	35	44	40	37	
12	43	39	34	43	39	35	45	40	37	
15	44	40	35	44	41	36	46	42	38	
17	44	40	35	45	41	36	47	42	38	
20	45	41	36	46	42	38	48	43	39	
25	46	42	38	47	43	40	49	44	41	
30	47	43	39	48	44	41	50	45	42	
35	49	45	41	50	46	43	51	47	44	
40	51	46	42	52	47	44	54	49	45	
45	53	48	45	54	49	46	56	51	47	
50	54	50	47	55	51	48	57	53	49	
55	56	52	49	57	53	50	59	54	51	
60	58	54	51	59	54	51	61	56	53	

Table 10.1 Specifications of vibration and noise.

For special requirement, it is measured by BVT-1 A and GECO bearings are also classified in three classes as V1, V2 and V3. Details please find in the following Table 10.2.

Table 10.2 Specifications of vibration and noise.

Inner				Vibration ac	celeration BV1	[<mark>-1(0.001/s</mark>))		
bores		V1≤			V2≤			V3≤	
(mm)	Low	Medium	High	Low	Medium	High	Low	Medium	High
4	60	35	32	48	26	22	31	16	15
5	74	48	40	58	36	30	35	21	18
6	74	48	40	58	36	30	35	21	18
7	92	66	54	72	48	40	44	28	24
8	92	66	54	72	48	40	44	28	24
9	92	66	54	72	48	40	44	28	24
10	120	80	70	90	60	50	55	35	30
12	120	80	70	90	60	50	55	35	30
15	150	100	85	110	78	60	65	46	35
17	150	100	85	110	78	60	65	46	35
20	180	125	100	130	100	75	80	60	45
25	180	125	100	130	100	75	80	60	45
30	200	150	130	150	120	100	90	75	60
35	200	150	130	150	120	100	90	75	60
40	240	180	160	180	150	130	110	90	80
45	240	180	160	180	150	130	110	90	80
50	280	200	200	210	160	160	125	100	100
55	280	220	200	210	180	180	125	110	110
60	320	220	240	240	180	200	145	110	130

In our **GECO** Ball bearings, our series of vibration and noise level, good levels to be classified as following Table 10.3.

Table 10.3 Specifications of vibration and noise.

Series	Bores	(mm)
Selies	V1	Z3
60	6 ~ 20	25 ~ 30
62	5 ~ 20	25 ~ 30
63	10 ~ 12	15 ~ 20
618	5 ~ 20	25 ~ 40
619	5 ~ 20	25 ~ 40

The rest of the series which showing in the catalogue pages, below35mm inner bores should be controlled under Z2, Over 40mm inner bores should be controlled under Z1.

Boun	oundary dimensions			Basic loc dynami	ad ratings c static	Limiting	speeds	Bearing numbers	Abutment and fillet dimensions			Mass
	mr	n		1	N	rp	m			mm		kg(s).
d	D	В	$\boldsymbol{\gamma}_{s}$ min ¹⁾	Cr	Cor	arease	oil		Ds min	dh max	R max	(approx.)
10	26	8	0.3	4,550	1,960	29,000	34,000	6000	12.5	23.5	0.3	0.019
12	28	8	0.3	5,100	2,390	26,000	30,000	6001	14.5	25.5	0.3	0.021
15	32	9	0.3	5,600	2,840	22,000	26,000	6002	17.5	29.5	0.3	0.030
17	35	10	0.3	6,800	3,350	20,000	24,000	6003	19.5	32.5	0.3	0.039
20	42	12	0.6	9,400	5,050	18,000	21,000	6004	25.0	37.0	0.6	0.069
25	47	12	0.6	10,100	5,850	15,000	18,000	6005	30.0	42.0	0.6	0.080
30	55	13	1.0	13,200	8,300	13,000	15,000	6006	36.0	49.0	1.0	0.116
35	62	14	1.0	16,000	10,300	12,000	14,000	6007	41.0	56.0	1.0	0.155
40	68	15	1.0	16,800	11,500	10,000	12,000	6008	46.0	62.0	1.0	0.190
45	75	16	1.0	21,000	15,100	9,200	11,000	6009	51.0	69.0	1.0	0.237
50	80	16	1.0	21,800	16,600	8,400	9,800	6010	56.0	74.0	1.0	0.261
55	90	18	1.1	28,300	21,200	7,700	9,000	6011	62.0	83.0	1.0	0.388
60	95	18	1.1	29,500	23,200	7,000	8,300	6012	67.0	88.0	1.0	0.414
65	100	18	1.1	30,500	25,200	6,500	7,700	6013	72.0	93.0	1.0	0.421
70	110	20	1.1	38,000	31,000	6,100	7,100	6014	77.0	103.0	1.0	0.604
75	115	20	1.1	39,500	33,500	5,700	6,700	6015	82.0	108.0	1.0	0.649
80	125	22	1.1	47,500	40,000	5,300	6,200	6016	87.0	118.0	1.0	0.854
85	130	22	1.1	49,500	43,000	5,000	5,900	6017	92.0	123.0	1.0	0.890
90	140	24	1.5	58,000	49,500	4,700	5,600	6018	98.5	131.5	1.5	1.020
95	145	24	1.5	60,500	54,000	4,500	5,300	6019	103.5	136.5	1.5	1.080
100	150	24	1.5	60,000	54,000	4,200	5,000	6020	108.5	141.5	1.5	1.150

POWERTEK

GECO[®] —

SERIES 60..2RS, 60..ZZ

Non-contact sealed type (2RS)

Boundary dimensions Basic load ratings Limiting sp dynamic static						speeds	Bearing r	umbers	Abı	Mass				
	mn	n		1	1	rp	m	mm D				ו גע	D	kg(s).
d	D	В	$r_{s min}^{1}$	Cr	Cor	arease	oil			L min	nax	an max	К max	(approx.)
10	26	8	0.3	4,550	1,960	29,000	21,000	6000 2RS	6000 ZZ	12.5	13.5	23.5	0.3	0.019
12	28	8	0.3	5,100	2,390	26,000	18,000	6001 2RS	6001 ZZ	14.5	16.0	25.5	0.3	0.021
15	32	9	0.3	5,600	2,840	22,000	15,000	6002 2RS	6002 ZZ	17.5	19.0	29.5	0.3	0.030
17	35	10	0.3	6,800	3,350	20,000	14,000	6003 2RS	6003 ZZ	19.5	21.0	32.5	0.3	0.039
20	42	12	0.6	9,400	5,050	18,000	11,000	6004 2RS	6004 ZZ	25.0	26.0	37.0	0.6	0.069
25	47	12	0.6	10,100	5,850	15,000	9,400	6005 2RS	6005 ZZ	30.0	30.5	42.0	0.6	0.080
30	55	13	1.0	13,200	8,300	13,000	7,700	6006 2RS	6006 ZZ	36.0	37.0	49.0	1.0	0.116
35	62	14	1.0	16,000	10,300	12,000	6,800	6007 2RS	6007 ZZ	41.0	42.0	56.0	1.0	0.155
40	68	15	1.0	16,800	11,500	10,000	6,100	6008 2RS	6008 ZZ	46.0	47.0	62.0	1.0	0.190
45	75	16	1.0	21,000	15,100	9,200	5,400	6009 2RS	6009 ZZ	51.0	52.5	69.0	1.0	0.237
50	80	16	1.0	21,800	16,600	8,400	5,000	6010 2RS	6010 ZZ	56.0	57.5	74.0	1.0	0.261
55	90	18	1.1	28,300	21,200	7,700	4,500	6011 2RS	6011 ZZ	62.0	64.0	83.0	1.0	0.388
60	95	18	1.1	29,500	23,200	7,000	4,100	6012 2RS	6012 ZZ	67.0	69.0	88.0	1.0	0.414
65	100	18	1.1	30,500	25,200	6,500	3,900	6013 2RS	6013 ZZ	72.0	73.0	93.0	1.0	0.421
70	110	20	1.1	38,000	31,000	6,100	3,600	6014 2RS	6014 ZZ	77.0	80.5	103.0	1.0	0.604
75	115	20	1.1	39,500	33,500	5,700	3,300	6015 2RS	6015 ZZ	82.0	85.5	108.0	1.0	0.649
80	125	22	1.1	47,500	40,000	5,300	3,100	6016 2RS	6016 ZZ	87.0	91.5	118.0	1.0	0.854
85	130	22	1.1	49,500	43,000	5,000	2,900	6017 2RS	6017 ZZ	92.0	97.0	123.0	1.0	0.890
90	140	24	1.5	58,000	49,500	4,700	2,800	6018 2RS	6018 ZZ	98.5	102.0	131.5	1.5	1.020
95	145	24	1.5	60,500	54,000	4,500	2,600	6019 2RS	6019 ZZ	103.5	109.0	136.5	1.5	1.080
100	150	24	1.5	60,000	54,000	4,200	2,600	6020 2RS	6020 ZZ	108.5	110.0	141.5	1.5	1.150

Boun	dary d	imen	sions	Basic load ratings dynamic static		Limiting	speeds	Bearing numbers	Abutment and fillet dimensions			Mass
	mn	n		N	l	rp	m			mm	~	kg(s).
d	D	В	$\boldsymbol{\gamma}_{s}$ min ¹⁾	Cr	Cor	arease	oil		Ds min	dh max	R max	(approx.)
10	30	9	0.6	5,100	2,390	25,000	30,000	6200	15.0	25.0	0.6	0.032
12	32	10	0.6	6,100	2,750	22,000	26,000	6201	17.0	27.0	0.6	0.037
15	35	11	0.6	7,750	3,600	19,000	23,000	6202	20.0	30.0	0.6	0.045
17	40	12	0.6	9,600	4,600	18,000	21,000	6203	22.0	35.0	0.6	0.066
20	47	14	1.0	12,800	6,650	16,000	18,000	6204	26.0	41.0	1.0	0.106
25	52	15	1.0	14,000	7,850	13,000	15,000	6205	31.0	46.0	1.0	0.128
30	62	16	1.0	19,500	11,300	11,000	13,000	6206	36.0	56.0	1.0	0.199
35	72	17	1.1	25,700	15,300	9,800	11,000	6207	42.0	65.0	1.0	0.288
40	80	18	1.1	29,100	17,800	8,700	10,000	6208	47.0	73.0	1.0	0.366
45	85	19	1.1	32,500	20,400	7,800	9,200	6209	52.0	78.0	1.0	0.398
50	90	20	1.1	35,000	23,200	7,100	8,300	6210	57.0	83.0	1.0	0.454
55	100	21	1.5	43,500	29,200	6,400	7,600	6211	63.5	91.5	1.5	0.601
60	110	22	1.5	52,500	36,000	6,000	7,000	6212	68.5	101.5	1.5	0.783
65	120	23	1.5	57,500	40,000	5,500	6,500	6213	73.5	111.5	1.5	0.990
70	125	24	1.5	62,000	44,000	5,100	6,000	6214	78.5	116.5	1.5	1.070
75	130	25	1.5	66,000	49,500	4,800	5,600	6215	83.5	121.5	1.5	1.180
80	140	26	2.0	72,500	53,000	4,500	5,300	6216	90.0	130.0	2.0	1.400
85	150	28	2.0	83,500	64,000	4,200	5,000	6217	95.0	140.0	2.0	1.790
90	160	30	2.0	96,000	71,500	4,000	4,700	6218	100.0	150.0	2.0	2.150
95	170	32	2.1	109,000	82,000	3,700	4,400	6219	107.0	158.0	2.0	2.620
100	180	34	2.1	122,000	93,000	3,500	4,200	6220	112.0	168.0	2.0	3.140

POWERTEK

GECO[®] —

SERIES 62..2RS, 62..ZZ

sealed type (2RS)

Boun	dary d	imen	sions	Basic loa dynamic	d ratings static	Limiting	speeds	Bearing	numbers	Abu	utment of diment	and fille sions	et	Mass
	mr	n		N		rp	m				mn	1	D	kg(s).
d	D	В	$\gamma_{\rm S} \min^{1}$	Cr	Cor	arease	oil			L min)s max	dh max	K max	(approx.)
10	30	9	0.6	5,100	2,390	25,000	18,000	6200 2RS	6200 ZZ	15.0	16.0	25.0	0.6	0.032
12	32	10	0.6	6,100	2,750	22,000	16,000	6201 2RS	6201 ZZ	17.0	17.5	27.0	0.6	0.037
15	35	11	0.6	7,750	3,600	19,000	15,000	6202 2RS	6202 ZZ	20.0	20.5	30.0	0.6	0.045
17	40	12	0.6	9,600	4,600	18,000	12,000	6203 2RS	6203 ZZ	22.0	23.0	35.0	0.6	0.066
20	47	14	1.0	12,800	6,650	16,000	10,000	6204 2RS	6204 ZZ	26.0	28.0	41.0	1.0	0.106
25	52	15	1.0	14,000	7,850	13,000	8,900	6205 2RS	6205 ZZ	31.0	32.0	46.0	1.0	0.128
30	62	16	1.0	19,500	11,300	11,000	7,300	6206 2RS	6206 ZZ	36.0	39.0	56.0	1.0	0.199
35	72	17	1.1	25,700	15,300	9,800	6,300	6207 2RS	6207 ZZ	42.0	45.0	65.0	1.0	0.288
40	80	18	1.1	29,100	17,800	8,700	5,600	6208 2RS	6208 ZZ	47.0	51.0	73.0	1.0	0.366
45	85	19	1.1	32,500	20,400	7,800	5,200	6209 2RS	6209 ZZ	52.0	55.5	78.0	1.0	0.398
50	90	20	1.1	35,000	23,200	7,100	4,700	6210 2RS	6210 ZZ	57.0	60.0	83.0	1.0	0.454
55	100	21	1.5	43,500	29,200	6,400	4,300	6211 2RS	6211 ZZ	63.5	67.0	91.5	1.5	0.601
60	110	22	1.5	52,500	36,000	6,000	3,800	6212 2RS	6212 ZZ	68.5	75.0	101.5	1.5	0.783
65	120	23	1.5	57,500	40,000	5,500	3,600	6213 2RS	6213 ZZ	73.5	80.5	111.5	1.5	0.990
70	125	24	1.5	62,000	44,000	5,100	3,400	6214 2RS	6214 ZZ	78.5	85.0	116.5	1.5	1.070
75	130	25	1.5	66,000	49,500	4,800	3,200	6215 2RS	6215 ZZ	83.5	90.5	121.5	1.5	1.180
80	140	26	2.0	72,500	53,000	4,500	3,000	6216 2RS	6216 ZZ	90.0	95.5	130.0	2.0	1.400
85	150	28	2.0	83,500	64,000	4,200	2,800	6217 2RS	6217 ZZ	95.0	103.0	140.0	2.0	1.790
90	160	30	2.0	96,000	71,500	4,000	2,600	6218 2RS	6218 ZZ	100.0	109.0	150.0	2.0	2.150
95	170	32	2.1	109,000	82,000	3,700	2,500	6219 2RS	6219 ZZ	107.0	116.0	158.0	2.0	2.620
100	180	34	2.1	122,000	93,000	3,500	2,300	6220 2RS	6220 ZZ	112.0	122.0	168.0	2.0	3.140

Bour	idary d	imen	sions	Basic loa dynamic	d ratings static	Limiting	speeds	Bearing numbers	Abutr di	nent and imensions	fillet 5	Mass
	mr	n		1	N	rp	m		D	mm	D	kg(s).
d	D	В	$\boldsymbol{\Upsilon}$ s min ¹⁾	Cr	Cor	grease	oil		Ds min	dh max	R max	(approx.)
10	35	11	0.6	8,200	3,500	23,000	27,000	6300	15.0	30.0	0.6	0.053
12	37	12	1.0	9,700	4,200	20,000	24,000	6301	18.0	31.0	1.0	0.060
15	42	13	1.0	11,400	5,450	17,000	21,000	6302	21.0	36.0	1.0	0.082
17	47	14	1.0	13,500	6,550	16,000	19,000	6303	23.0	41.0	1.0	0.115
20	52	15	1.1	15,900	7,900	14,000	17,000	6304	27.0	45.0	1.0	0.144
25	62	17	1.1	21,200	10,900	12,000	14,000	6305	32.0	55.0	1.0	0.232
30	72	19	1.1	26,700	15,000	10,000	12,000	6306	37.0	65.0	1.0	0.360
35	80	21	1.5	33,500	19,100	8,800	10,000	6307	43.5	71.5	1.5	0.457
40	90	23	1.5	40,500	24,000	7,800	9,200	6308	48.5	81.5	1.5	0.630
45	100	25	1.5	53,000	32,000	7,000	8,200	6309	53.5	91.5	1.5	0.814
50	110	27	2.0	62,000	38,500	6,400	7,500	6310	60.0	100.0	2.0	1.070
55	120	29	2.0	71,500	45,000	5,800	6,800	6311	65.0	110.0	2.0	1.370
60	130	31	2.1	82,000	52,000	5,400	6,300	6312	72.0	118.0	2.0	1.730
65	140	33	2.1	92,500	60,000	4,900	5,800	6313	77.0	128.0	2.0	2.080
70	150	35	2.1	104,000	68,000	4,600	5,400	6314	82.0	138.0	2.0	2.520
75	160	37	2.1	113,000	77,000	4,300	5,000	6315	87.0	148.0	2.0	3.020
80	170	39	2.1	123,000	86,500	4,000	4,700	6316	92.0	158.0	2.0	3.590
85	180	41	3.0	133,000	97,000	3,800	4,500	6317	99.0	166.0	2.5	4.230
90	190	43	3.0	143,000	107,000	3,600	4,200	6318	104.0	176.0	2.5	4.910
95	200	45	3.0	153,000	119,000	3,300	3,900	6319	109.0	186.0	2.5	5.670
100	215	47	3.0	173,000	141,000	3,200	3,700	6320	114.0	201.0	2.5	7.000

POWERTEK

GECO[®] —

SERIES 63..2RS, 63..ZZ

sealed type (2RS)

Boundary dimensions Basic load rati dynamic stat						Limiting	speeds	Bearing	numbers	Abu	utment dimen	and fill sions	et	Mass
	mn	n		1	N	rp	m				mn	n	D	kg(s).
d	D	В	Υ s min ¹⁾	Cr	Cor	arease	oil			min)s max	dh max	R max	(approx.)
10	35	11	0.6	8,200	3,500	23,000	16,000	6300 2RS	6300 ZZ	15.0	17.0	30.0	0.6	0.053
12	37	12	1.0	9,700	4,200	20,000	15,000	6301 2RS	6301 ZZ	18.0	18.5	31.0	1.0	0.060
15	42	13	1.0	11,400	5,450	17,000	12,000	6302 2RS	6302 ZZ	21.0	23.0	36.0	1.0	0.082
17	47	14	1.0	13,500	6,550	16,000	11,000	6303 2RS	6303 ZZ	23.0	25.0	41.0	1.0	0.115
20	52	15	1.1	15,900	7,900	14,000	10,000	6304 2RS	6304 ZZ	27.0	28.5	45.0	1.0	0.144
25	62	17	1.1	21,200	10,900	12,000	8,100	6305 2RS	6305 ZZ	32.0	35.0	55.0	1.0	0.232
30	72	19	1.1	26,700	15,000	10,000	6,600	6306 2RS	6306 ZZ	37.0	43.0	65.0	1.0	0.360
35	80	21	1.5	33,500	19,100	8,800	6,000	6307 2RS	6307 ZZ	43.5	47.0	71.5	1.5	0.457
40	90	23	1.5	40,500	24,000	7,800	5,300	6308 2RS	6308 ZZ	48.5	54.0	81.5	1.5	0.630
45	100	25	1.5	53,000	32,000	7,000	4,700	6309 2RS	6309 ZZ	53.5	61.5	91.5	1.5	0.814
50	110	27	2.0	62,000	38,500	6,400	4,200	6310 2RS	6310 ZZ	60.0	68.5	100.0	2.0	1.070
55	120	29	2.0	71,500	45,000	5,800	3,900	6311 2RS	6311 ZZ	65.0	74.0	110.0	2.0	1.370
60	130	31	2.1	82,000	52,000	5,400	3,600	6312 2RS	6312 ZZ	72.0	80.5	118.0	2.0	1.730
65	140	33	2.1	92,500	60,000	4,900	3,300	6313 2RS	6313 ZZ	77.0	86.0	128.0	2.0	2.080
70	150	35	2.1	104,000	68,000	4,600	3,100	6314 2RS	6314 ZZ	82.0	92.5	138.0	2.0	2.520
75	160	37	2.1	113,000	77,000	4,300	2,900	6315 2RS	6315 ZZ	87.0	99.0	148.0	2.0	3.020
80	170	39	2.1	123,000	86,500	4,000	2,700	6316 2RS	6316 ZZ	92.0	105.0	158.0	2.0	3.590
85	180	41	3.0	133,000	97,000	3,800	2,600	6317 2RS	6317 ZZ	99.0	112.0	166.0	2.5	4.230
90	190	43	3.0	143,000	107,000	3,600	2,400	6318 2RS	6318 ZZ	104.0	118.0	176.0	2.5	4.910
95	200	45	3.0	153,000	119,000	3,300	2,300	-	6319 ZZ	109.0	125.0	186.0	2.5	5.670
100	215	47	3.0	173,000	141,000	3,200	2,200	-	6320 ZZ	114.0	133.0	201.0	2.5	7.000

Boun	idary d mr	imen: n	sions	Basic loc dynami	ad ratings c static N	Limiting rp	speeds m	Bearing numbers	Abut d	ment and imension mm	fillet s	Mass kg(s).
d	D	В	rs min ¹⁾	Cr	Cor	grease	oil		Ds min	dh max	R max	(approx.)
12	28	7	0.3	5,100	2,390	26,000	30,000	16001	14.5	25.5	0.3	0.019
15	32	8	0.3	5,600	2,840	22,000	26,000	16002	17.5	29.5	0.3	0.025
17	35	8	0.3	6,800	3,350	20,000	24,000	16003	19.5	32.5	0.3	0.032
20	42	8	0.3	7,900	4,500	18,000	21,000	16004	22.5	39.5	0.3	0.051
25	47	8	0.3	8,350	5,100	15,000	18,000	16005	27.5	44.5	0.3	0.060
30	55	9	0.3	11,200	7,350	13,000	15,000	16006	32.5	52.5	0.3	0.091
35	62	9	0.3	11,700	8,200	12,000	14,000	16007	37.5	59.5	0.3	0.110
40	68	9	0.3	12,600	9,650	10,000	12,000	16008	42.5	65.5	0.3	0.125
45	75	10	0.6	12,900	10,500	9,200	11,000	16009	50.0	70.0	0.6	0.171
50	80	10	0.6	13,200	11,300	8,400	9,800	16010	55.0	75.0	0.6	0.180
55	90	11	0.6	18,600	15,300	7,700	9,000	16011	60.0	85.0	0.6	0.258
60	95	11	0.6	20,000	17,500	7,000	8,300	16012	65.0	90.0	0.6	0.283
65	100	11	0.6	20,500	18,700	6,500	7,700	16013	70.0	95.0	0.6	0.307
70	110	13	0.6	24,400	22,600	6,100	7,100	16014	75.0	105.0	0.6	0.441
75	115	13	0.6	25,000	24,000	5,700	6,700	16015	80.0	110.0	0.6	0.464
80	125	14	0.6	25,400	25,100	5,300	6,200	16016	85.0	120.0	0.6	0.597
85	130	14	0.6	25,900	26,200	5,000	5,900	16017	90.0	125.0	0.6	0.626
90	140	16	1.0	33,500	33,500	4,700	5,600	16018	96.0	134.0	1.0	0.848
95	145	16	1.0	34,500	35,000	4,500	5,300	16019	101.0	139.0	1.0	0.885
100	150	16	1.0	35,000	36,500	4,200	5,000	16020	106.0	144.0	1.0	0.910
105	160	18	1.0	52,000	50,500	4,000	4,700	16021	111.0	154.0	1.0	1.200
110	170	19	1.0	57,500	56,500	3,800	4,500	16022	116.0	164.0	1.0	1.460
120	180	19	1.0	63,000	63,500	3,500	4,100	16024	126.0	174.0	1.0	1.560

BALL BEARINGS SERIES 68..2RS, 68..ZZ

Ball Bearings

Non-contact sealed type (2RS)

Bou	ndary c mi	limen n	sions	Basic loa dynamic I	d ratings static	Limiting rp	speeds	Bearing	numbers	Ab	outment dimer m	and fi nsions m	llet	Mass kg.
d	Л	B	m 1)	C	Carr	drogso	oil			I)s	dh	R	
10	19	5	0.3	1.830	925	32 000	24 000	6800 2RS	6800 77	12	12.5	17	0.3	0.005
12	21	5	0.3	1,920	1.040	29.000	20.000	6801 2RS	6801 ZZ	14	14.5	19	0.3	0.006
15	24	5	0.3	2.080	1,260	26.000	17.000	6802 2RS	6802 77	17	17.5	22	0.3	0.007
17	26	5	0.3	2,810	1,720	24,000	15,000	6803 2RS	6803 ZZ	19	19.5	24	0.3	0.008
20	32	7	0.3	4,000	2,470	21,000	13,000	6804 2RS	6804 ZZ	22	23.0	30	0.3	0.019
25	37	7	0.3	4,300	2,950	18,000	10,000	6805 2RS	6805 ZZ	27	28.0	35	0.3	0.022
30	42	7	0.3	4,700	3,650	15,000	8,800	6806 2RS	6806 ZZ	32	33.0	40	0.3	0.026
35	47	7	0.3	4,900	4,050	13,000	7,600	6807 2RS	6807 ZZ	37	38.0	45	0.3	0.029
40	52	7	0.3	5,100	4,400	12,000	6,700	6808 2RS	6808 ZZ	42	43.0	50	0.3	0.033
45	58	7	0.3	6,400	5,650	11,000	5,900	6809 2RS	6809 ZZ	47	48.0	56	0.3	0.040
50	65	7	0.3	6,600	6,100	9,600	5,300	6810 2RS	6810 ZZ	52	54.0	63	0.3	0.052
55	72	9	0.3	8,800	8,100	8,700	4,800	6811 2RS	6811 ZZ	57	59.0	70	0.3	0.083
60	78	10	0.3	11,500	10,600	8,000	4,400	6812 2RS	6812 ZZ	62	64.5	76	0.3	0.106
65	85	10	0.6	11,600	11,000	7,400	4,100	6813 2RS	6813 ZZ	69	70.0	81	0.6	0.128
70	90	10	0.6	12,100	11,900	6,900	3,800	6814 2RS	6814 ZZ	74	75.5	86	0.6	0.137
75	95	10	0.6	12,500	12,900	6,400	3,600	6815 2RS	6815 ZZ	79	80.0	91	0.6	0.145
80	100	10	0.6	12,700	13,300	6,000	3,400	6816 2RS	6816 ZZ	84	85.0	96	0.6	0.154

BALL BEARINGS SERIES 69..2RS, 69..ZZ

Ball Bearings

sealed type (2RS)

Bou	ndary d mi	limer m	sions	Basic loa dynamic	d ratings static	Limiting	speeds	Bearing r	numbers	At	outment dimer m	t and fil nsions m	llet	Mass ka.
,			D							I)s	dh	R	
d	D	В	Υ s min ¹⁾	Cr	Cor	grease	oil			min	max	max	max	(approx.)
10	22	6	0.3	2,700	1,270	30,000	21,000	6900 2RS	6900 ZZ	12	13.0	20	0.3	0.009
12	24	6	0.3	2,890	1,460	27,000	19,000	6901 2RS	6901 ZZ	14	15.0	22	0.3	0.011
15	28	7	0.3	4,100	2,060	24,000	16,000	6902 2RS	6902 ZZ	17	18.0	26	0.3	0.016
17	30	7	0.3	4,650	2,580	22,000	14,000	6903 2RS	6903 ZZ	19	20.0	28	0.3	0.018
20	37	9	0.3	6,400	3,700	19,000	12,000	6904 2RS	6904 ZZ	22	24.0	35	0.3	0.036
25	42	9	0.3	7,050	4,550	16,000	9,800	6905 2RS	6905 ZZ	27	29.0	40	0.3	0.042
30	47	9	0.3	7,250	5,000	14,000	8,400	6906 2RS	6906 ZZ	32	34.0	45	0.3	0.048
35	55	10	0.6	11,200	7,450	12,000	7,100	6907 2RS	6907 ZZ	39	40.0	51	0.6	0.074
40	62	12	0.6	14,600	10,200	11,000	6,300	6908 2RS	6908 ZZ	44	45.0	58	0.6	0.110
45	68	12	0.6	15,100	11,200	9,800	5,600	6909 2RS	6909 ZZ	49	51.0	64	0.6	0.128
50	72	12	0,6	15,600	12,200	8,900	5,100	6910 2RS	6910 ZZ	54	55.5	68	0.6	0.132
55	80	13	1.0	16,000	13,300	8,200	4,600	6911 2RS	6911 ZZ	60	61.5	75	1.0	0.180
60	85	13	1.0	16,400	14,300	7,600	4,300	6912 2RS	6912 ZZ	65	66.5	80	1.0	0.193
65	90	13	1.0	17,400	16,100	7,000	4,000	6913 2RS	6913 ZZ	70	71.5	85	1.0	0.206
70	100	16	1.0	23,700	21,200	6,500	3,700	6914 2RS	6914 ZZ	75	77.5	95	1.0	0.334
75	105	16	1.0	24,400	22,600	6,100	3,500	6915 2RS	6915 ZZ	80	82.5	100	1.0	0.353
80	110	16	1.0	24,900	24,000	5,700	3,200	6916 2RS	6916 ZZ	85	88.0	105	1.0	0.373

Во	undary	dimensi	ons	Basic loa dynamic	d ratings static	Speed rating	Bearing numbers	Al	outmen dime	t and fill nsions	et	Mass
	m	m		1	1	rpm			m	m		kg.
,	D	D		0	0			L)s	dh	R	()
d	D	В	Ts min"	Co	Cor			min	max	max	max	(approx.)
10	30	14	0.6	5,070	2,360	17,000	62200 2RS	14.0	14.5	26.0	0.6	0.040
12	32	14	0.6	6,890	3,100	15,000	62201 2RS	16.0	16.0	28.0	0.6	0.045
15	35	14	0.6	7,800	3,750	13,000	62202 2RS	19.0	19.0	31.0	0.6	0.054
17	40	16	0.6	9,560	4,750	12,000	62203 2RS	21.0	21.0	36.0	0.6	0.083
20	47	18	1.0	12,700	6,550	10,000	62204 2RS	25.0	25.5	42.0	1.0	0.130
25	52	18	1.0	14,000	7,800	8,500	62205 2RS	30.0	31.0	47.0	1.0	0.150
30	62	20	1.0	19,500	11,200	7,500	62206 2RS	35.0	37.0	57.0	1.0	0.240
35	72	23	1.1	25,500	15,300	6,300	62207 2RS	41.5	43.5	65.5	1.0	0.370
40	80	23	1.1	30,700	19,000	5,600	62208 2RS	46.5	49.5	73.5	1.0	0.440
45	85	23	1.1	33,200	21,600	5,000	62209 2RS	51.5	54.0	78.5	1.0	0.480
50	90	23	1.1	35,100	23,200	4,800	62210 2RS	56.5	58.0	83.5	1.0	0.520

BALL BEARINGS SERIES 623..2RS

Во	oundary o	dimensi	ons	Basic loa dynamic	d ratings static	Speed rating	Bearing numbers	AI	outmen dime	t and fill nsions	et	Mass
	m	m		1	1	rpm		Т	m	im Ji	D	kg(s).
d	D	В	rs min ¹⁾	Co	Cor			min)s max	dh max	К тах	(approx.)
10	35	17	0.6	8,060	3,400	15,000	62300 2RS	14.0	15.0	31.0	0.6	0.06
12	37	17	1.0	9,750	4,150	14,000	62301 2RS	17.0	17.0	32.0	1.0	0.07
15	42	17	1.0	11,400	5,400	12,000	62302 2RS	20.0	20.5	37.0	1.0	0.11
17	47	19	1.0	13,500	6,550	11,000	62303 2RS	22.0	23.5	42.0	1.0	0.15
20	52	21	1.1	15,900	7,800	9,500	62304 2RS	26.5	27.0	45.5	1.0	0.20
25	62	24	1.1	22,500	11,600	7,500	62305 2RS	31.5	33.5	55.5	1.0	0.32
30	72	27	1.1	28,100	16,000	6,300	62306 2RS	36.5	41.5	65.5	1.0	0.48
35	80	31	1.5	33,200	19,000	6,000	62307 2RS	43.0	44.0	72.0	1.5	0.66
40	90	33	1.5	41,000	24,000	5,000	62308 2RS	48.0	50.5	82.0	1.5	0.89
45	100	36	1.5	52,700	31,500	4,500	62309 2RS	53.0	56.5	92.0	1.5	1.15
50	110	40	2.0	61,800	38,000	4,300	62310 2RS	59.0	63.0	101.0	2.0	1.55

Во	undary (m	dimensi Im	ons	Basic loa dynamic	d ratings static	Speed rating rpm	Bearing numbers	A	butmen dimer m	t and fill nsions m	let	Mass ka.
,	D	D		0	0			Ι	Ds	dh	R	
d	D	В	rs min"	Co	Cor			min	max	max	max	(approx.)
10	26	12	0.3	4,620	1,960	19,000	63000 2RS	12	12.5	24	0.3	0.025
12	28	12	0.3	5,070	2,360	17,000	63001 2RS	14	14.5	26	0.3	0.029
15	32	13	0.3	5,590	2,850	14,000	63002 2RS	17	18.0	30	0.3	0.039
17	35	14	0.3	6,050	3,250	13,000	63003 2RS	19	20.0	33	0.3	0.052
20	42	16	0.6	9,360	5,000	11,000	63004 2RS	24	24.5	38	0.6	0.086
25	47	16	0.6	11,200	6,550	9,500	63005 2RS	29	29.0	43	0.6	0.100
30	55	19	1.0	13,300	8,300	8,000	63006 2RS	35	35.5	50	1.0	0.160
35	62	20	1.0	15,900	10,200	7,000	63007 2RS	40	40.5	57	1.0	0.210
40	68	21	1.0	16,800	11,600	6,300	63008 2RS	45	46.0	63	1.0	0.260
45	75	23	1.0	20,800	14,600	5,600	63009 2RS	50	51.0	70	1.0	0.340
50	80	23	1.0	21,600	16,000	5,000	63010 2RS	55	56.0	75	1.0	0.370

Bou	ndary o	lime	nsions	Basic loa dynamic	d ratings static	Limiting	speeds	Bearing numbers	Abut c	ment and limension	fillet s	Mass
	m	m		1	1	rp	m			mm		kg(s).
d	D	В	\boldsymbol{r}_{s} min ¹⁾	Cr	Cor	grease	oil		Ds min	dh max	R max	(approx.)
17	62	17	1.1	22,700	10,800	14,000	16,000	6403	24.0	55.0	1.0	0.270
20	72	19	1.1	28,500	13,900	12,000	14,000	6404	27.0	65.0	1.0	0.400
25	80	21	1.5	34,500	17,500	10,000	12,000	6405	33.5	71.5	1.5	0.530
30	90	23	1.5	43,500	23,900	8,800	10,000	6406	38.5	81.5	1.5	0.735
35	100	25	1.5	55,000	31,000	7,800	9,100	6407	43.5	91.5	1.5	0.952
40	110	27	2.0	63,500	36,500	7,000	8,200	6408	50.0	100.0	2.0	1.230
45	120	29	2.0	77,000	45,000	6,300	7,400	6409	55.0	110.0	2.0	1.530
50	130	31	2.1	83,000	49,500	5,700	6,700	6410	62.0	118.0	2.0	1.880
55	140	33	2.1	89,000	54,000	5,200	6,100	6411	67.0	128.0	2.0	2.290
60	150	35	2.1	102,000	64,500	4,800	5,700	6412	72.0	138.0	2.0	2.770

Bou	ndary	dimer	nsions	Basic lo	ad ratings	Limiting	speeds	Bearing numbers	Abu	utmen dime	t and nsions	fillet	Mass
	n	nm		aynanne	N	rp	m			m	m		kg.
d	D	В	rs min ¹⁾	Cr	Cor	grease	oil		Ds min	dh max	R max	а	(approx.)
10	30	14.3	0.6	6950	3800	14000	19000	3200	15	25	0.6	17.5	0.049
12	32	15.9	0.6	9150	5050	13000	17000	3201	17	27	0.6	19.0	0.057
15	35	15.9	0.6	10000	6050	11000	15000	3202	20	30	0.6	21.0	0.064
17	40	17.5	0.6	12800	7900	9900	13000	3203	22	35	0.6	24.0	0.096
20	47	20.6	1.0	19000	12100	8800	12000	3204	26	41	1.0	28.0	0.153
25	52	20.6	1.0	20600	14300	7300	9800	3205	31	46	1.0	31.5	0.175
30	62	23.8	1.0	28600	20400	6300	8400	3206	36	56	1.0	36.5	0.286
35	72	27.0	1.1	38000	27800	5500	7400	3207	42	65	1.0	42.5	0.436
40	80	30.2	1.1	42500	32500	4900	6600	3208	47	73	1.0	47.5	0.590
45	85	30.2	1.1	48000	37000	4400	5900	3209	52	78	1.0	50.5	0.640
50	90	30.2	1.1	51000	42000	4000	5300	3210	57	83	1.0	54.0	0.689

BALL BEARINGS SERIES 32..2RS & 32..ZZ

Во	undary	dimens	ions	Basic lo dynamic	oad ratings static	Limiting	speeds	Bearing	numbers	Mass
		nm		-,	N	rp	m			kg.
d	D	В	rs min ¹⁾	Cr	Cor	grease	oil			(approx.)
10	30	14.3	0.6	7150	3900	16000	22000	3200 2RS	3200 ZZ	0.045
12	32	15.9	0.6	10600	5850	15000	20000	3201 2RS	3201 ZZ	0.050
15	35	15.9	0.6	11700	6950	12000	17000	3202 2RS	3202 ZZ	0.068
17	40	17.5	0.6	14800	9000	10000	15000	3203 2RS	3203 ZZ	0.090
20	47	20.6	1.0	19500	12200	9000	13000	3204 2RS	3204 ZZ	0.140
25	52	20.6	1.0	21200	14600	8000	11000	3205 2RS	3205 ZZ	0.160
30	62	23.8	1.0	29600	21200	7000	9500	3206 2RS	3206 ZZ	0.260
35	72	27.0	1.1	37700	27500	6000	8000	3207 2RS	3207 ZZ	0.400
40	80	30.2	1.1	44900	34000	5600	7500	3208 2RS	3208 ZZ	0.530
45	85	30.2	1.1	48800	39000	5000	6700	3209 2RS	3209 ZZ	0.570

Boundary dimensions			sions	Basic lo	ad ratings	Limiting	speeds	Bearing numbers	Abu	Mass			
	m	ım		aynamic	N	rpm			rkgn				
d	D	В	rs min ¹⁾	Cr	Cor	grease	oil		Ds min	dh max	R max	а	(approx.)
15	42	19.0	1.0	17200	10100	9900	13000	3302	21.0	36.0	1.0	26.0	0.132
17	47	22.2	1.0	20400	12100	9000	12000	3303	23.0	41.0	1.0	28.5	0.181
20	52	22.2	1.1	20600	12700	8000	11000	3304	27.0	45.0	1.0	30.5	0.217
25	62	25.4	1.1	30500	20500	6700	8900	3305	32.0	55.0	1.0	36.5	0.362
30	72	30.2	1.1	39500	27500	5700	7600	3306	37.0	65.0	1.0	43.0	0.553
35	80	34.9	1.5	49500	35000	5000	6600	3307	43.5	71.5	1.5	48.5	0.766
40	90	36.5	1.5	60500	44000	4400	5900	3308	48.5	81.5	1.5	53.5	1.010
45	100	39.7	1.5	72500	54000	4000	5300	3309	53.5	91.5	1.5	60.0	1.340
50	110	44.4	2.0	85500	64500	3600	4800	3310	60.0	100.0	2.0	65.5	1.810

BALL BEARINGS SERIES 33..2RS & 33..ZZ

Вс	oundary	dimensi	ions	Basic l	oad ratings	Limiting	g speeds	Bearing	numbers	Mass
	n	nm		aynamic	N	rş	om			kg(s).
d	D	В	rs min ¹⁾	Cr	Cor	grease	oil			(approx.)
15	42	19.0	1.0	17,200	10,100	9,900	13,000	3302 2RS	3302 ZZ	0.132
17	47	22.2	1.0	20,400	12,100	9,000	12,000	3303 2RS	3303 ZZ	0.181
20	52	22.2	1.1	22,500	14,600	8,500	12,000	3304 2RS	3304 ZZ	0.200
25	62	25.4	1.1	30,700	20,400	7,500	10,000	3305 2RS	3305 ZZ	0.320
30	72	30.2	1.1	41,600	29,000	6,300	8,500	3306 2RS	3306 ZZ	0.480
45	100	39.7	1.5	72,800	53,000	4,500	6,000	3309 2RS	3309 ZZ	1.150

SERIES 12,12..K

Cylindrical bore

Boundary dimensions mm			ons	Basic loa dynamic I	d ratings static N	Limiting	speeds m	Bearing r	umbers	Mc kg cylindrical	iss (s). tapered
d	D	В	rs min ¹⁾	Cr	Cor	arease	oil			bore	bore
10	30	9	0.6	5,500	1,190	21,000	24,000	1200 E	-	0.033	-
12	32	10	0.6	5,600	1,270	18,000	22,000	1201 E	-	0.040	-
15	35	11	0.6	7,450	1,750	16,000	19,000	1202 E	-	0.049	-
17	40	12	0.6	7,900	2,010	14,000	17,000	1203 E	-	0.072	-
20	47	14	1.0	9,900	2,610	13,000	15,000	1204	1204 K	0.116	0.114
25	52	15	1.0	12,100	3,300	11,000	13,000	1205	1205 K	0.138	0.135
30	62	16	1.0	15,600	4,650	9,200	11,000	1206	1206 K	0.217	0.213
35	72	17	1.1	15,800	5,100	8,000	9,400	1207	1207 K	0.317	0.312
40	80	18	1.1	19,300	6,550	7,100	8,400	1208	1208 K	0.414	0.407
45	85	19	1.1	21,900	7,350	6,400	7,500	1209	1209 K	0.457	0.448
50	90	20	1.1	22,700	8,100	5,800	6,800	1210	1210 K	0.515	0.504
55	100	21	1.5	26,800	10,000	5,300	6,200	1211	1211 K	0.692	0.679
60	110	22	1.5	30,000	11,500	4,900	5,800	1212	1212 K	0.879	0.864
65	120	23	1.5	31,000	12,500	4,500	5,300	1213	1213 K	1.130	1.110
70	125	24	1.5	34,500	13,800	4,200	4,900	1214	-	1.240	-
75	130	25	1.5	39,000	15,700	3,900	4,600	1215	1215 K	1.330	1.310
80	140	26	2.0	40,000	17,000	3,700	4,300	1216	1216 K	1.650	1.620

SERIES 13,13..K

Ball Bearings

Cylindrical bore

Tapered bore taper 1:12

Вс	oundary o	dimensi	ons	Basic loa dynamic	d ratings static	Limiting	speeds	Bearing n	umbers	Mass kg(s).	
	m	m		r	4	rpm				bore	bore
d	D	В	$\boldsymbol{\Upsilon}$ s min ¹⁾	Cr	Cor	grease	oil			(app	orox.)
10	35	11	0.6	7,250	1,620	18,000	21,000	1300 E	-	0.058	-
12	37	12	1.0	9,450	2,160	16,000	18,000	1301 E	-	0.066	-
15	42	13	1.0	9,550	2,300	13,000	16,000	1302 E	-	0.092	-
17	47	14	1.0	12,500	3,200	12,000	14,000	1303 E	-	0.128	-
20	52	15	1.1	12,400	3,350	11,000	13,000	1304	1304 K	0.160	0.158
25	62	17	1.1	18,000	5,000	9,100	11,000	1305	1305 K	0.255	0.251
30	72	19	1.1	21,300	6,300	7,700	9,100	1306	1306 K	0.383	0.377
35	80	21	1.5	25,100	7,850	6,800	8,000	1307	1307 K	0.500	0.492
40	90	23	1.5	29,600	9,700	6,000	7,000	1308	1308 K	0.709	0.698
45	100	25	1.5	38,000	12,700	5,400	6,300	1309	1309 K	0.953	0.938
50	110	27	2.0	43,500	14,100	4,900	5,800	1310	1310 K	1.200	1.180
55	120	29	2.0	51,500	17,900	4,500	5,200	1311	1311 K	1.580	1.560
60	130	31	2.1	57,000	20,800	4,100	4,800	1312	1312 K	1.960	1.930

POWERTEK

GECO[®] -BALL BEARINGS SERIES 22, 22..K

Cylindrical bore

Tapered bore taper 1:12

Вс	oundary o	dimensi	ons	Basic loa dynamic	d ratings static	Limiting	speeds	Bearing r	umbers	Mass kg(s).	
	m	m			•	ib	m			bore	bore
d	D	В	$r_{s} min^{1}$	Cr	Cor	grease	oil			(app	rox.)
10	30	14	0.6	7,300	1,590	19,000	23,000	2200 E	-	0.047	-
12	32	14	0.6	7,600	1,730	17,000	20,000	2201 E	-	0.051	-
15	35	14	0.6	7,700	1,850	15,000	18,000	2202	-	0.060	-
17	40	16	0.6	9,800	2,410	13,000	16,000	2203	-	0.088	-
20	47	18	1.0	12,600	3,300	12,000	14,000	2204	2204 K	0.140	0.137
25	52	18	1.0	12,300	3,450	10,000	12,000	2205	2205 K	0.157	0.153
30	62	20	1.0	15,200	4,500	8,600	10,000	2206	2206 K	0.256	0.250
35	72	23	1.1	21,500	6,600	7,500	8,800	2207	2207 K	0.392	0.382
40	80	23	1.1	22,300	7,350	6,700	7,900	2208	2208 K	0.493	0.482
45	85	23	1.1	23,200	8,150	6,000	7,100	2209	2209 K	0.540	0.528
50	90	23	1.1	23,200	8,450	5,500	6,400	2210	2210 K	0.583	0.569
55	100	25	1.5	26,500	9,900	5,000	5,800	2211	2211 K	0.787	0.769
60	110	28	1.5	34,000	12,600	4,600	5,400	2212	2212 K	1.080	1.060

SERIES 22..2RS

Bou	undary o	limens	sions	Basic loa	d ratings	Speed rating	Bearing numbers	Mass
	m	m		aynamic	static N	rpm		kg(s).
d	D	В	rs min ¹⁾	Cr	Cor	grease		(approx.)
10	30	14	0.6	5,530	1,180	17,000	2200 E 2RS	0.048
12	32	14	0.6	6,240	1,430	16,000	2201 E 2RS	0.053
15	35	14	0.6	7,410	1,760	14,000	2202 2RS	0.058
17	40	16	0.6	8,840	2,200	12,000	2203 2RS	0.089
20	47	18	1.0	12,700	3,400	10,000	2204 2RS	0.140
25	52	18	1.0	14,300	4,000	9,000	2205 2RS	0.160
30	62	20	1.0	15,600	4,650	7,500	2206 2RS	0.260
35	72	23	1.1	19,000	6,000	6,300	2207 2RS	0.410
40	80	23	1.1	19,900	6,950	5,600	2208 2RS	0.500
45	85	23	1.1	22,900	7,800	5,300	2209 2RS	0.530
50	90	23	1.1	22,900	8,150	4,800	2210 2RS	0.570
55	100	25	1.5	27,600	10,600	4,300	2211 2RS	0.790
60	110	28	1.5	31,200	12,200	3,800	2212 2RS	1.050

POWERTEK

GECO[®] -BALL BEARINGS SERIES 23, 23..K

Cylindrical bore

Tapered bore taper 1:12

Вс	oundary o	dimensi	ons	Basic loa dynamic	id ratings static	Limiting	speeds	Bearing r	umbers	Mass kg(s).	
	m	m		1	N	rp	m			cylindrical bore	tapered bore
d	D	В	rs min ¹⁾	Cr	Cor	grease	oil			(app	rox.)
10	35	17	0.6	10,100	2,150	17,000	20,000	2300 E	-	0.083	-
12	37	17	1.0	11,800	2,710	15,000	17,000	2301 E	-	0.091	-
15	42	17	1.0	12,000	2,900	13,000	15,000	2302	-	0.114	-
17	47	19	1.0	14,400	3,550	11,000	14,000	2303	-	0.156	-
20	52	21	1.1	18,100	4,700	10,000	12,000	2304	2304 K	0.206	0.201
25	62	24	1.1	24,400	6,600	8,500	10,000	2305	2305 K	0.334	0.326
30	72	27	1.1	31,500	8,750	7,200	8,500	2306	2306 K	0.496	0.485
35	80	31	1.5	39,500	11,300	6,300	7,400	2307	2307 K	0.671	0.653
40	90	33	1.5	45,000	13,500	5,600	6,600	2308	2308 K	0.918	0.895
45	100	36	1.5	54,000	16,700	5,000	5,900	2309	2309 K	1.230	1.200
50	110	40	2.0	64,500	20,200	4,600	5,400	2310	2310 K	1.630	1.590
55	120	43	2.0	75,500	24,000	4,200	4,900	2311	2311 K	2.100	2.050
60	130	46	2.1	87,000	28,200	3,800	4,500	2312	2312 K	2.590	2.520

SERIES 23..2RS

Boundary dimensions			ions	Basic loa	d ratings	Speed rating	Bearing numbers	Mass
mm				N		rpm		kg(s).
d	D	В	rs min ¹⁾	Cr	Cor	grease		(approx.)
15	42	17	1.0	10,800	2,600	12,000	2302 2RS	0.11
17	47	19	1.0	12,700	3,400	11,000	2303 2RS	0.16
20	52	21	1.1	14,300	4,000	9,500	2304 2RS	0.21
25	62	24	1.1	19,000	5,400	7,500	2305 2RS	0.34
30	72	27	1.1	22,500	6,800	6,700	2306 2RS	0.51
35	80	31	1.5	26,500	8,500	5,600	2307 2RS	0.70
40	90	33	1.5	33,800	11,200	5,000	2308 2RS	0.96
45	100	36	1.5	39,000	13,400	4,500	2309 2RS	1.30
50	110	40	2.0	43,600	14,000	4,000	2310 2RS	1.65

POWERTEK

GECO

STAINLESS STEEL BALL BEARINGS SERIES SS 60.. 2RS & SS 60.. ZZ

Non-contact sealed type (2RS)

Mass kg.	numbers	Bearing	Limiting speeds	d ratings static	Basic loc dynamic l	ns	Boundary dimensions mm			
(approx.)				Cor	Cr	rs min ¹⁾	В	D	d	
0.020	SS 6000 ZZ	SS 6000 2RS	19,000	1,960	4,550	0.3	8	26	10	
0.023	SS 6001 ZZ	SS 6001 2RS	18,000	2,360	5,100	0.3	8	28	12	
0.031	SS 6002 ZZ	SS 6002 2RS	16,000	2,850	5,600	0.3	9	32	15	
0.040	SS 6003 ZZ	SS 6003 2RS	14,000	3,250	6,000	0.3	10	35	17	
0.067	SS 6004 ZZ	SS 6004 2RS	12,000	5,000	9,300	0.6	12	42	20	
0.084	SS 6005 ZZ	SS 6005 2RS	10,000	5,850	10,000	0.6	12	47	25	
0.120	SS 6006 ZZ	SS 6006 2RS	8,000	8,000	12,700	0.6	13	55	30	
0.163	SS 6007 ZZ	SS 6007 2RS	7,500	10,200	16,000	0.6	14	62	35	
0.190	SS 6008 ZZ	SS 6008 2RS	6,300	11,600	17,800	1.0	15	68	40	
0.244	SS 6009 ZZ	SS 6009 2RS	6,000	14,300	20,000	1.0	16	75	45	
0.271	SS 6010 ZZ	SS 6010 2RS	5,600	15,600	20,800	1.0	16	80	50	
0.390	SS 6011 ZZ	SS 6011 2RS	4,500	21,200	29,600	1.1	18	90	55	
0.420	SS 6012 ZZ	SS 6012 2RS	4,300	23,200	30,700	1.1	18	95	60	
0.440	SS 6013 ZZ	SS 6013 2RS	4,000	25,000	31,900	1.1	18	100	65	

STAINLESS STEEL BALL BEARINGS SERIES SS 62.. 2RS & SS 62.. ZZ

	Boundary	dimensio m	ns	Basic loo dynamic	ad ratings static N	Limiting speeds	Bearing r	Mass kg.	
d	יי יי	R	rs min ¹⁾	Cr	Cor				(approx.)
10	30	9	0.6	6,000	2,600	17,000	SS 6200 2RS	SS 6200 ZZ	0.034
12	32	10	0.6	6,950	3,100	16,000	SS 6201 2RS	SS 6201 ZZ	0.040
15	35	11	0.6	7,800	3,750	14,000	SS 6202 2RS	SS 6202 ZZ	0.045
17	40	12	0.6	9,500	4,750	12,000	SS 6203 2RS	SS 6203 ZZ	0.067
20	47	14	1.0	12,700	6,550	10,000	SS 6204 2RS	SS 6204 ZZ	0.109
25	52	15	1.0	14,000	7,800	9,000	SS 6205 2RS	SS 6205 ZZ	0.133
30	62	16	1.0	19,300	11,200	7,500	SS 6206 2RS	SS 6206 ZZ	0.211
35	72	17	1.1	25,500	15,300	6,300	SS 6207 2RS	SS 6207 ZZ	0.303
40	80	18	1.1	29,000	18,000	5,600	SS 6208 2RS	SS 6208 ZZ	0.384
45	85	19	1.1	31,000	20,400	5,300	SS 6209 2RS	SS 6209 ZZ	0.441
50	90	20	1.1	37,100	23,200	4,800	SS 6210 2RS	SS 6210 ZZ	0.460

GECCO[®] POWERTEK

